Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡ 2 or ¡ 3 , and let c be a constant. Prove the following gradient rules. a. Constants Rule: ▿ ( cf ) = c ▿ f b. Sum Rule : ▿ ( f + g ) = ▿ f + ▿ g c. Product Rule: ▿ ( fg ) = (▿ f ) g + f ▿ g d. Quotient Rule : ∇ ( f g ) = g ∇ f − f ∇ g g 2 e . Chain Rule: ∇ ( f ∘ g ) = f ’ ( g ) ∇ g , where f is a function of one variable
Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡ 2 or ¡ 3 , and let c be a constant. Prove the following gradient rules. a. Constants Rule: ▿ ( cf ) = c ▿ f b. Sum Rule : ▿ ( f + g ) = ▿ f + ▿ g c. Product Rule: ▿ ( fg ) = (▿ f ) g + f ▿ g d. Quotient Rule : ∇ ( f g ) = g ∇ f − f ∇ g g 2 e . Chain Rule: ∇ ( f ∘ g ) = f ’ ( g ) ∇ g , where f is a function of one variable
Solution Summary: The author explains that the constant rule nabla is differentiable at the point (x,y,z).
Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡2 or ¡3, and let c be a constant. Prove the following gradient rules.
a. Constants Rule: ▿ (cf) = c▿f
b. Sum Rule: ▿ (f + g) = ▿f + ▿g
c. Product Rule: ▿ (fg) = (▿f)g + f▿g
d. Quotient Rule:
∇
(
f
g
)
=
g
∇
f
−
f
∇
g
g
2
e. Chain Rule:
∇
(
f
∘
g
)
=
f
’
(
g
)
∇
g
, where f is a function of one variable
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Suppose the number of people who register to attend the Tucson Festival of Books can be modeled by P(t) = k(1.1),
where t is the number of days since the registration window opened. Assume k is a positive constant.
Which of the following represents how long it will take in days for the number of people who register to double?
t =
In(1.1)
In(2)
In(2)
t =
In(1.1)
In(1.1)
t =
t =
t =
In(2) - In(k)
In(2)
In(k) + In(1.1)
In(2) - In(k)
In(1.1)
Use the method of washers to find the volume of the solid that is obtained
when the region between the graphs f(x) = √√2 and g(x) = secx over the
interval ≤x≤ is rotated about the x-axis.
5
Use the method of disks to find the volume of the solid that is obtained
when the region under the curve y = over the interval [4,17] is rotated
about the x-axis.
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.