Lagrange multipliers Use Lagrange multipliers to find the maximum and minimum values of f ( when they exist ) subject to the given constraint. 96. f ( x , y , z ) = x 2 y 2 z subject to 2 x 2 + y 2 + z 2 = 25
Lagrange multipliers Use Lagrange multipliers to find the maximum and minimum values of f ( when they exist ) subject to the given constraint. 96. f ( x , y , z ) = x 2 y 2 z subject to 2 x 2 + y 2 + z 2 = 25
#3 Find the derivative y' = of the following functions, using the derivative rules:
dx
a) y-Cos 6x b) y=x-Sin4x c) y=x-Cos3x d) y=x-R CD-X:-:TCH :D:D:D - Sin
f)
Sin(x²) (9) Tan (x³)
mate
hat is the largest area that can be en
18 For the function y=x³-3x² - 1, use derivatives to:
(a) determine the intervals of increase and decrease.
(b) determine the local (relative) maxima and minima.
(c) determine the intervals of concavity.
(d) determine the points of inflection.
b)
(e) sketch the graph with the above information indicated on the graph.
use L'Hopital Rule to evaluate the following.
a) 4x3 +10x2
23009׳-9
943-9
b) hm
3-84
хто бу+2
< xan
x-30650)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY