Absolute maxima and minima Find the absolute maximum and minimum values of the following functions on the given region R . 52. f ( x , y ) = x 2 + y 2 ; R is the closed region bounded by the ellipse x 2 4 + y 2 = 1 .
Absolute maxima and minima Find the absolute maximum and minimum values of the following functions on the given region R . 52. f ( x , y ) = x 2 + y 2 ; R is the closed region bounded by the ellipse x 2 4 + y 2 = 1 .
Solution Summary: The author explains the absolute maximum and minimum values of the function f(x,y)=sqrtx2+y
Q1/The pressure drop in pascals (Pa) for a fluid flowing in a pipe with a sudden decrease in diameter
can be determined based on the loss of head equation given below:
h = 24-11
2g
Area A
Area A
Area A
Where: V₂ is the velocity in position 2 (m/s), g: is acceleration due to gravity = 9.81 m/s², A₁ and
A₂ are the cross-sectional areas of the tube in position 1 and 2 respectively.
A==d²
Where: d is the diameter (m). Write a program in a script file that calculates the head loss. When the
script file is executed, it requests the user to input the velocity (V₂) in m/s and values of diameters
(d, and d₂). The program displays the inputted value of v followed by a table with the values of
diameters in the first and second columns and the corresponding values of h, in the third column.
2
2
A simple pendulum is formed of a rope of length L = 2.2 m and a bob of mass m.
%3D
When the pendulum makes an angle e
10° with the vertical, the speed of the
%3D
bob is 2 m/s. The angular speed, e', at the lowest position is equal to: (g = 10
m/s^2)
A triangle ABC having coordinates A(5,5), B(10,3), C(7,10) is to be scaled two times in x direction and three times in y direction with respect to point A. Find the new coordinates of triangle A’B’C’.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY