Interpretation: The given liquids need to be arranged in order of increasing surface tension.
Concept Introduction: Intermolecular forces in liquids are defined as forces between liquid molecules. These forces can be attractive or repulsive depending on the type of bonding between the atoms of molecules of liquids.
Surface tension can be explained as a property of the surface of the liquids/fluids shrinking into the minimum surface area. Thus, it is the energy needed to increase the surface area of the liquid.
It is directly related to intermolecular forces thus, if liquids have stronger intermolecular interactions, there will be greater surface tension.
Explanation of Solution
The given liquids are as follows:
On comparing the above three liquids, water and ethanol have hydrogen bonding thus, they have higher intermolecular interactions as compared to hexane. Here, hexane molecules only have London Dispersion forces. Therefore, hexane will have minimum intermolecular forces of attraction. On comparing the hydrogen bonding between water and ethanol molecules, water molecules have strong hydrogen bonding because in the water there are two partial negative charges on O atom making it more electronegative as compared to the O atom in ethanol.
Thus, the increasing order of intermolecular forces will be:
hexane
Since if liquids have stronger intermolecular interactions, there will be greater surface tension. Thus, the order of increasing surface tension will be:
hexane
Chapter 15 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
- Naming the Alkanes a) Write the IUPAC nomenclature of the compound below b) Draw 4-isopropyl-2,4,5-trimethylheptane, identify the primary, secondary, tertiary, and quaternary carbons. c) Rank pentane, neopentane and isopentane for boiling point. pentane: H3C-CH2-CH2-CH2-CH3 neopentane: CH3 H3C-Ċ-CH3 I CH3 isopentane: CH3 H3C-CH2-CH-CH3arrow_forwardWhich will evaporate faster, 1-Butanol or Pentane? Explain your choice.arrow_forwardUsing the equation below, what is the rate of this reaction if the rate of disappearance of H2 is 0.44 M/sec? H2 + Br2 → 2HBrarrow_forward
- 2Fe3+(aq) + Sn2+(aq) □ 2Fe²+(aq) + Sn 4+ (aq) If the change in Sn²+ concentration is 0.0010M in 38.5 seconds, what is the rate of disappearance of Sn²+?arrow_forwardFor a neutral hydrogen atom with an electron in the n = 4 state, how many different energies are possible when a photon is emitted? 4 3 2 1 There are infinite possibilitiesarrow_forward2 NO(g) + H2(g) → N2(g) +2 H2O(g) If NO has rate of disappearance of 0.025 M/min, what is the rate of this reaction?arrow_forward
- 2Fe3+(aq) + Sn2+(aq) □ 2Fe²+(aq) + Sn 4+ (aq) If the change in Sn2+ concentration is 0.0010M in 38.5 seconds, what is the rate of appearance of Fe²+?arrow_forwardUsing the equation below, if the rate of disappearance of Cl2 is 0.26 M/min, what is the rate of this reaction? 2NO(g) + Cl2(g) → 2NOCI(g)arrow_forwardA 45.0 mL solution containing a mixture of 0.0634 M KCN and 0.0634 M KCI is titrated with 0.107 M AgNO. From this mixture, which silver salt will precipitate first? A list of Ksp values can be found in the table of solubility constants. • AgCI • not enough information to determine AgCN What is the concentration of Ag* at the first equivalence point? [Ag*] = Will the second silver salt begin to precipitate at the first equivalence point before the first silver salt has completely precipitated? • not enough information to determine • yes • noarrow_forward
- [Review Topics] [References] Indicate whether the pair of structures shown represent stereoisomers, constitutional isomers, different conformations of the same compound, or the same conformation of a compound viewed from a different perspective. Note that cis, trans isomers are an example of stereoisomers. H₂N ✓ CI H₂N NH2 NH₂ CI Submit Answer Retry Entire Group 2 more group attempts remaining Previous Next>arrow_forwardDon't used Ai solutionarrow_forwardDraw resonance structures for the following compounds. Please provide a thorough explanation that allows for undertanding of topic.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY