
The oxidation of sulfur dioxide to give sulfurtrioxide is an important step in the industrial process for thesynthesis of sulfuric acid.
What is the equilibrium constant expression,
What is the equilibrium constant expression,
How is the equilibrium constant

Interpretation:
The necessary expressions need to be given for the equilibrium constant & reverse equilibrium constant for the given reaction.
Concept introduction:
The equilibrium constant of a chemical reaction is the value of the reaction quotient of the specific reaction at chemical equilibrium.
For a general reaction as follows:
The expression for the equilibrium constant is as follows:
Answer to Problem 15.1P
Also,
Relation:
Explanation of Solution
At equilibrium, there will be no change in the concentration of products and reactants takes place.
Consider the following reaction.
The forward half arrow indicates the forward reaction where A & B reacts to form C & D. The half-back arrow indicates the backward reaction where C & D reacts to form A & B. at the chemical equilibrium these forward & backward reactions occur at the same rate. Therefore, no change in chemical composition happens. In the above reaction a, b, c & d indicates the stoichiometric coefficients.
The equilibrium constant is the ratio between the concentration of the products with the power of the stoichiometric coefficient&the same of the reactants.
So, the equilibrium constant (Kc) of the forward reaction can be expressed as,
Now consider the given reaction.
To derive the expression for the equilibrium constant, consider the forward reaction. The forward reaction is the reaction between SO2& O2 to produce SO3.
So, according to the above description, the equilibrium constant can be expressed as follows.
The reverse equilibrium, Kc (reverse) is related to the backward reaction. The backward reaction is the reaction of SO3to form SO2& O2.
So, the equilibrium constant of the backward reaction (Kc, reverse) can be expressed as
Consider the derived expression for Kc which is,
This is equal to
So, it is clear that
Want to see more full solutions like this?
Chapter 15 Solutions
CHEMISTRY-TEXT
Additional Science Textbook Solutions
Microbiology: An Introduction
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry (8th Edition)
Chemistry: Structure and Properties (2nd Edition)
Campbell Essential Biology with Physiology (5th Edition)
Human Anatomy & Physiology (2nd Edition)
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- Q4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br 'CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





