(a) Interpretation: The change in the number of moles of CO 2 when mixture is disturbed by adding solid NaHCO 3 needs to be explained. Concept introduction: According to Le Chatelier’s principle, if equilibrium is disturbed by changing the number of moles, pressure and temperature, the equilibrium will shift to remove the disturbance. For example, if number of moles or pressure of reactant is increased, the reaction will shift in forward direction to decrease the number of moles or pressure of the reactant. If temperature is increased, the reaction moves to forward direction for an endothermic reaction and it moves to backward direction for exothermic reaction.
(a) Interpretation: The change in the number of moles of CO 2 when mixture is disturbed by adding solid NaHCO 3 needs to be explained. Concept introduction: According to Le Chatelier’s principle, if equilibrium is disturbed by changing the number of moles, pressure and temperature, the equilibrium will shift to remove the disturbance. For example, if number of moles or pressure of reactant is increased, the reaction will shift in forward direction to decrease the number of moles or pressure of the reactant. If temperature is increased, the reaction moves to forward direction for an endothermic reaction and it moves to backward direction for exothermic reaction.
Solution Summary: The author explains Le Chatelier's principle that if equilibrium is disturbed by changing the number of moles, pressure and temperature, the equilibrium shifts to remove the disturbance.
The change in the number of moles of CO2 when mixture is disturbed by adding solid NaHCO3 needs to be explained.
Concept introduction:
According to Le Chatelier’s principle, if equilibrium is disturbed by changing the number of moles, pressure and temperature, the equilibrium will shift to remove the disturbance. For example, if number of moles or pressure of reactant is increased, the reaction will shift in forward direction to decrease the number of moles or pressure of the reactant.
If temperature is increased, the reaction moves to forward direction for an endothermic reaction and it moves to backward direction for exothermic reaction.
Interpretation Introduction
(b)
Interpretation:
The change in the number of moles of CO2 when mixture is disturbed by adding water vapor needs to be explained.
Concept introduction:
According to Le Chatelier’s principle, if equilibrium is disturbed by changing the number of moles, pressure and temperature, the equilibrium will shift to remove the disturbance. For example, if number of moles or pressure of reactant is increased, the reaction will shift in forward direction to decrease the number of moles or pressure of the reactant.
If temperature is increased, the reaction moves to forward direction for an endothermic reaction and it moves to backward direction for exothermic reaction.
Interpretation Introduction
(c)
Interpretation:
The change in the number of moles of CO2 when mixture is disturbed by decreasing the volume of the container needs to be explained.
Concept introduction:
According to Le Chatelier’s principle, if equilibrium is disturbed by changing the number of moles, pressure and temperature, the equilibrium will shift to remove the disturbance. For example, if number of moles or pressure of reactant is increased, the reaction will shift in forward direction to decrease the number of moles or pressure of the reactant.
If temperature is increased, the reaction moves to forward direction for an endothermic reaction and it moves to backward direction for exothermic reaction.
Interpretation Introduction
(d)
Interpretation:
The change in the number of moles of CO2 when mixture is disturbed by increasing the temperature needs to be explained.
Concept introduction:
According to Le Chatelier’s principle, if equilibrium is disturbed by changing the number of moles, pressure and temperature, the equilibrium will shift to remove the disturbance. For example, if number of moles or pressure of reactant is increased, the reaction will shift in forward direction to decrease the number of moles or pressure of the reactant.
If temperature is increased, the reaction moves to forward direction for an endothermic reaction and it moves to backward direction for exothermic reaction.
2H2S(g)+3O2(g)→2SO2(g)+2H2O(g)
A 1.2mol sample of H2S(g) is combined with excess O2(g), and the reaction goes to completion.
Question
Which of the following predicts the theoretical yield of SO2(g) from the reaction?
Responses
1.2 g
Answer A: 1.2 grams
A
41 g
Answer B: 41 grams
B
77 g
Answer C: 77 grams
C
154 g
Answer D: 154 grams
D
Part VII. Below are the 'HNMR, 13 C-NMR, COSY 2D- NMR, and HSQC 2D-NMR (similar with HETCOR but axes are reversed) spectra of an
organic compound with molecular formula C6H1003 - Assign chemical shift values to the H and c atoms of the
compound. Find the structure. Show complete solutions.
Predicted 1H NMR Spectrum
4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1
f1 (ppm)
Predicted 13C NMR Spectrum
100
f1 (ppm)
30
220 210 200 190 180
170
160 150 140 130 120
110
90
80
70
-26
60
50
40
46
30
20
115
10
1.0 0.9 0.8
0
-10
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.