Concept explainers
a)
To determine: number of necklaces and bracelets to produce maximum profit of the jewellery shop by formulating linear programming and solve it.
Introduction: Linear programming is used to obtain the best possible outcome from the given real-world problem which is subjective to constraints and inequalities. It is used to make decisions based on business objectives. It is used in business planning, industrial engineering, and physical science. Express the real-world problem into the mathematical expression to get the optimal solution from the linear programming.
b)
To determine: if the store produces the maximum bracelet and necklace will it meet the maximum demand for the bracelet.
c)
To determine: profit for the necklace would result in no bracelet being reduced.
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Operations and Supply Chain Management, 9th Edition WileyPLUS Registration Card + Loose-leaf Print Companion
- Lemingtons is trying to determine how many Jean Hudson dresses to order for the spring season. Demand for the dresses is assumed to follow a normal distribution with mean 400 and standard deviation 100. The contract between Jean Hudson and Lemingtons works as follows. At the beginning of the season, Lemingtons reserves x units of capacity. Lemingtons must take delivery for at least 0.8x dresses and can, if desired, take delivery on up to x dresses. Each dress sells for 160 and Hudson charges 50 per dress. If Lemingtons does not take delivery on all x dresses, it owes Hudson a 5 penalty for each unit of reserved capacity that is unused. For example, if Lemingtons orders 450 dresses and demand is for 400 dresses, Lemingtons will receive 400 dresses and owe Jean 400(50) + 50(5). How many units of capacity should Lemingtons reserve to maximize its expected profit?arrow_forwardSeas Beginning sells clothing by mail order. An important question is when to strike a customer from the companys mailing list. At present, the company strikes a customer from its mailing list if a customer fails to order from six consecutive catalogs. The company wants to know whether striking a customer from its list after a customer fails to order from four consecutive catalogs results in a higher profit per customer. The following data are available: If a customer placed an order the last time she received a catalog, then there is a 20% chance she will order from the next catalog. If a customer last placed an order one catalog ago, there is a 16% chance she will order from the next catalog she receives. If a customer last placed an order two catalogs ago, there is a 12% chance she will order from the next catalog she receives. If a customer last placed an order three catalogs ago, there is an 8% chance she will order from the next catalog she receives. If a customer last placed an order four catalogs ago, there is a 4% chance she will order from the next catalog she receives. If a customer last placed an order five catalogs ago, there is a 2% chance she will order from the next catalog she receives. It costs 2 to send a catalog, and the average profit per order is 30. Assume a customer has just placed an order. To maximize expected profit per customer, would Seas Beginning make more money canceling such a customer after six nonorders or four nonorders?arrow_forwardAssume the demand for a companys drug Wozac during the current year is 50,000, and assume demand will grow at 5% a year. If the company builds a plant that can produce x units of Wozac per year, it will cost 16x. Each unit of Wozac is sold for 3. Each unit of Wozac produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. Determine how large a Wozac plant the company should build to maximize its expected profit over the next 10 years.arrow_forward
- You now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forwardIt costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.arrow_forwardThe Tinkan Company produces one-pound cans for the Canadian salmon industry. Each year the salmon spawn during a 24-hour period and must be canned immediately. Tinkan has the following agreement with the salmon industry. The company can deliver as many cans as it chooses. Then the salmon are caught. For each can by which Tinkan falls short of the salmon industrys needs, the company pays the industry a 2 penalty. Cans cost Tinkan 1 to produce and are sold by Tinkan for 2 per can. If any cans are left over, they are returned to Tinkan and the company reimburses the industry 2 for each extra can. These extra cans are put in storage for next year. Each year a can is held in storage, a carrying cost equal to 20% of the cans production cost is incurred. It is well known that the number of salmon harvested during a year is strongly related to the number of salmon harvested the previous year. In fact, using past data, Tinkan estimates that the harvest size in year t, Ht (measured in the number of cans required), is related to the harvest size in the previous year, Ht1, by the equation Ht = Ht1et where et is normally distributed with mean 1.02 and standard deviation 0.10. Tinkan plans to use the following production strategy. For some value of x, it produces enough cans at the beginning of year t to bring its inventory up to x+Ht, where Ht is the predicted harvest size in year t. Then it delivers these cans to the salmon industry. For example, if it uses x = 100,000, the predicted harvest size is 500,000 cans, and 80,000 cans are already in inventory, then Tinkan produces and delivers 520,000 cans. Given that the harvest size for the previous year was 550,000 cans, use simulation to help Tinkan develop a production strategy that maximizes its expected profit over the next 20 years. Assume that the company begins year 1 with an initial inventory of 300,000 cans.arrow_forward
- Six months before its annual convention, the American Medical Association must determine how many rooms to reserve. At this time, the AMA can reserve rooms at a cost of 150 per room. The AMA believes the number of doctors attending the convention will be normally distributed with a mean of 5000 and a standard deviation of 1000. If the number of people attending the convention exceeds the number of rooms reserved, extra rooms must be reserved at a cost of 250 per room. a. Use simulation with @RISK to determine the number of rooms that should be reserved to minimize the expected cost to the AMA. Try possible values from 4100 to 4900 in increments of 100. b. Redo part a for the case where the number attending has a triangular distribution with minimum value 2000, maximum value 7000, and most likely value 5000. Does this change the substantive results from part a?arrow_forwardWhat combination of x and y will yield the optimum for this problem? Maximize Z = $3x + $15y Subject to: Multiple Choice x= 0, y=4 x= 0, y=3 x= 0, y=0 x= 2y=0 O x=1,y=25 2x + 4y ≤ 12 5x + 2y ≤ 10arrow_forwardSolve the following Linear Programming model using the graphical method (USING EXCEL){Write the steps of construction} Q1)MaximizeH = x + 3y Objective functionsubject tox + y ≤ 502x + y ≤ 60 x ≥ 0, y ≥ 0arrow_forward
- !arrow_forwardThe Fish House (TFH) in Norfolk, Virginia, sells fresh fish and seafood. TFH receives daily shipments of farm-raised trout from a nearby supplier. Each trout costs $2.45 and is sold for $3.95. To maintain its reputation for freshness, at the end of the day TFH sells any leftover trout to a local pet food manufacturer for $1.25 each. The owner of TFH wants to determine how many trout to order each day. Historically, the daily demand for trout is: Demand 10 11 12 13 14 15 16 17 18 19 20 Probability 0.02 0.06 0.09 0.11 0.13 0.15 0.18 0.11 0.07 0.05 0.03 a. Construct a payoff matrix for this problem. b. How much should the owner of TFH be willing to pay to obtain a demand forecast that is 100% accurate? give a clear explanation for (b)arrow_forwardA quarry uses five types of rocks to fulfill four orders. The gypsum content, availability of each type of rock, and the production cost per pound for each rock, as well as the size of each order and the minimum and maximum gypsum percentage in each order, are given below.Rock type-------Cost-------% gypsum-------Amount Available1-------------------$1.00-----------2.0%-----------5002-------------------$5.00-----------5.0%-----------6003-------------------$5.50-----------4.5%-----------7004-------------------$2.00-----------3.0%-----------4005-------------------$1.20-----------6.0%-----------450 Order No.--------------------1----------2----------3---------4Order Size------------------500------600------500------350Min % gypsum-----------3.5%-----3.8%-----4.0%-----3.6%Max % gypsum----------4.4%-----4.6%-----4.7%-----4.8%What is the cheapest way to fill the orders?arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,