Interpretation:
Five quantitative ways to describe the composition of solution have to be compared and contrasted.
Concept introduction:
Solutions are homogeneous mixtures of two or more than two components. By homogenous mixture we mean that its composition and properties are uniform throughout the mixture.
Composition of a solution can be defined by expressing its concentration. Concentration can be expressed either qualitatively or quantitatively. Concentration can be described qualitatively using the words concentrated or dilute. The solution is either dilute or concentrated depends on the amount of solute present in the solution. In concentrated solution more amount of solute is present compare to dilute solution. There are several ways by which we can describe the concentration of the solution quantitatively. Some commonly used quantitative descriptions are percent by mass, percent by volume, molarity, molality and mole fraction.
Answer to Problem 31SSC
Quantitatively concentration of the solution can be expressed in five different ways such as percent by mass, percent by volume, molarity, molality and mole fraction. Among them, molarity, molality, and mole fraction are basedon moles of solute per some other quantity;percent by volume and molarity are defined by per volume of solution basis, molality and molefraction are based on per quantity of solvent basis, percent by mass and percent by volume are the only ratios involving percentages.
Quantitatively concentration of the solution can be expressed in five different ways-
Mass percentage or percent by mass (w/W): The mass percentage of a component of a solution is defined as:
Volume/volume percentage (v/V percent): Percent by volume is expressed as the ratio of the volume of the solute to the total volume of the solution multiplied by 100.
In expression,
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution and is expressed as:
Molality: Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the solvent and is expressed as:
Mole fraction: Mole fraction defined as the number of moles of one component divided by total the number of moles in the mixture. Mole fraction is denoted as ‘
Mole fraction
Molarity, molality, and mole fraction are based on moles of solute per some other quantity, percent by volume and molarity are defined by per volume of solution basis, molality and mole fraction are based on per quantity of solvent basis, percent by mass and percent by volume are the only ratios involving percentages. Mass percent, mole fraction and molality are independent of temperature, whereas volume percent and molarity are function of temperature. This is because volume depends on temperature and the mass does not.
Explanation of Solution
Quantitatively concentration of the solution can be expressed in five different ways-
Mass percentage or percent by mass (w/W): The mass percentage of a component of a solution is defined as:
Volume/volume percentage (v/V percent): Percent by volume is expressed as the ratio of the volume of the solute to the total volume of the solution multiplied by 100.
In expression,
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution and is expressed as:
Molality: Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the solvent and is expressed as:
Mole fraction: Mole fraction defined as the number of moles of one component divided by total the number of moles in the mixture. Mole fraction is denoted as ‘
Mole fraction
Molarity, molality, and mole fraction are based on moles of solute per some other quantity, percent by volume and molarity are defined by per volume of solution basis, molality and mole fraction are based on per quantity of solvent basis, percent by mass and percent by volume are the only ratios involving percentages. Mass percent, mole fraction and molality are independent of temperature, whereas volume percent and molarity are function of temperature. This is because volume depends on temperature and the mass does not.
Chapter 14 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Microbiology: An Introduction
Campbell Biology in Focus (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Biology: Life on Earth (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- Calculate the differences between energy levels in J, Einstein's coefficients of estimated absorption and spontaneous emission and life time media for typical electronic transmissions (vnm = 1015 s-1) and vibrations (vnm = 1013 s-1) . Assume that the dipolar transition moments for these transactions are in the order of 1 D.Data: 1D = 3.33564x10-30 C m; epsilon0 = 8.85419x10-12 C2m-1J-1arrow_forwardDon't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- In an induced absorption process:a) the population of the fundamental state is diminishingb) the population of the excited state decreasesc) the non-radiating component is the predominant oned) the emission radiation is consistentarrow_forwardhow a - Cyanostilbenes are made? provide 3 different methods for their synthesisarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used Ai solutionarrow_forwardDraw a Lewis dot structure for C2H4Oarrow_forward3.3 Consider the variation of molar Gibbs energy with pressure. 3.3.1 Write the mathematical expression for the slope of graph of molar Gibbs energy against 3.3.2 pressure at constant temperature. Draw in same diagram graphs showing variation with pressure of molar Gibbs energies of a substance in gaseous, liquid and solid forms at constant temperature. 3.3.3 Indicate in your graphs melting and boiling points. 3.3.4 Indicate for the respective phases the regions of relative stability.arrow_forward
- In 2-chloropropane, the signal for the H on the C next to Cl should be split into how many peaks?arrow_forward4.4 Consider as perfect gas 3.0 mol of argon gas to which 229 J of energy is supplied as heat at constant pressure and temperature increases by 2.55 K. Calculate 4.4.1 constant pressure molar heat capacity. 4.4.2 constant volume molar heat capacity.arrow_forward3.2 32 Consider calibrating a calorimeter and measuring heat transferred. A sample of compound was burned in a calorimeter and a temperature change of 3.33°C recorded. When a 1.23 A current from a 12.0 V source was passed through a heater in the same calorimeter for 156 s, the temperature changed of 4.47°C was recorded. 3.2.1 Calculate the heat supplied by the heater. 3.2.2 Calculate the calorimeter constant. 3.2.3 Calculate the heat released by the combustion reaction.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY