
Interpretation:
Five quantitative ways to describe the composition of solution have to be compared and contrasted.
Concept introduction:
Solutions are homogeneous mixtures of two or more than two components. By homogenous mixture we mean that its composition and properties are uniform throughout the mixture.
Composition of a solution can be defined by expressing its concentration. Concentration can be expressed either qualitatively or quantitatively. Concentration can be described qualitatively using the words concentrated or dilute. The solution is either dilute or concentrated depends on the amount of solute present in the solution. In concentrated solution more amount of solute is present compare to dilute solution. There are several ways by which we can describe the concentration of the solution quantitatively. Some commonly used quantitative descriptions are percent by mass, percent by volume, molarity, molality and mole fraction.

Answer to Problem 31SSC
Quantitatively concentration of the solution can be expressed in five different ways such as percent by mass, percent by volume, molarity, molality and mole fraction. Among them, molarity, molality, and mole fraction are basedon moles of solute per some other quantity;percent by volume and molarity are defined by per volume of solution basis, molality and molefraction are based on per quantity of solvent basis, percent by mass and percent by volume are the only ratios involving percentages.
Quantitatively concentration of the solution can be expressed in five different ways-
Mass percentage or percent by mass (w/W): The mass percentage of a component of a solution is defined as:
Volume/volume percentage (v/V percent): Percent by volume is expressed as the ratio of the volume of the solute to the total volume of the solution multiplied by 100.
In expression,
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution and is expressed as:
Molality: Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the solvent and is expressed as:
Mole fraction: Mole fraction defined as the number of moles of one component divided by total the number of moles in the mixture. Mole fraction is denoted as ‘
Mole fraction
Molarity, molality, and mole fraction are based on moles of solute per some other quantity, percent by volume and molarity are defined by per volume of solution basis, molality and mole fraction are based on per quantity of solvent basis, percent by mass and percent by volume are the only ratios involving percentages. Mass percent, mole fraction and molality are independent of temperature, whereas volume percent and molarity are function of temperature. This is because volume depends on temperature and the mass does not.
Explanation of Solution
Quantitatively concentration of the solution can be expressed in five different ways-
Mass percentage or percent by mass (w/W): The mass percentage of a component of a solution is defined as:
Volume/volume percentage (v/V percent): Percent by volume is expressed as the ratio of the volume of the solute to the total volume of the solution multiplied by 100.
In expression,
Molarity: Molarity is defined as the number of moles of solute present in one litre of the solution and is expressed as:
Molality: Molality (m) is defined as the number of moles of the solute per kilogram (kg) of the solvent and is expressed as:
Mole fraction: Mole fraction defined as the number of moles of one component divided by total the number of moles in the mixture. Mole fraction is denoted as ‘
Mole fraction
Molarity, molality, and mole fraction are based on moles of solute per some other quantity, percent by volume and molarity are defined by per volume of solution basis, molality and mole fraction are based on per quantity of solvent basis, percent by mass and percent by volume are the only ratios involving percentages. Mass percent, mole fraction and molality are independent of temperature, whereas volume percent and molarity are function of temperature. This is because volume depends on temperature and the mass does not.
Chapter 14 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
Microbiology: An Introduction
Campbell Biology in Focus (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
Biology: Life on Earth (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- LTS Solid: AT=Te-Ti Trial 1 Trial 2 Trial 3 Average ΔΗ Mass water, g 24.096 23.976 23.975 Moles of solid, mol 0.01763 001767 0101781 Temp. change, °C 2.9°C 11700 2.0°C Heat of reaction, J -292.37J -170.473 -193.26J AH, kJ/mole 16.58K 9.647 kJ 10.85 kr 16.58K59.64701 KJ mol 12.35k Minimum AS, J/mol K 41.582 mol-k Remember: q = mCsAT (m = mass of water, Cs=4.184J/g°C) & qsin =-qrxn & Show your calculations for: AH in J and then in kJ/mole for Trial 1: qa (24.0969)(4.1845/g) (-2.9°C)=-292.37J qsin = qrxn = 292.35 292.37J AH in J = 292.375 0.2923kJ 0.01763m01 =1.65×107 AH in kJ/mol = = 16.58K 0.01763mol mol qrx Minimum AS in J/mol K (Hint: use the average initial temperature of the three trials, con Kelvin.) AS=AHIT (1.65×10(9.64×103) + (1.0 Jimaiarrow_forwardFor the compound: C8H17NO2 Use the following information to come up with a plausible structure: 8 This compound has "carboxylic acid amide" and ether functional groups. The peaks at 1.2ppm are two signals that are overlapping one another. One of the two signals is a doublet that represents 6 hydrogens; the other signal is a quartet that represents 3 hydrogens.arrow_forwardVnk the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest bolling point, choose 2 next to the substance with the next highest boiling point, and so on. substance C D chemical symbol, chemical formula or Lewis structure. CH,-N-CH, CH, H H 10: H C-C-H H H H Cale H 10: H-C-C-N-CH, Bri CH, boiling point (C) Сен (C) B (Choosearrow_forward
- Please help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!arrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br "CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forwardExperiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





