Glencoe Chemistry: Matter and Change, Student Edition
Glencoe Chemistry: Matter and Change, Student Edition
1st Edition
ISBN: 9780076774609
Author: McGraw-Hill Education
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

Question
Book Icon
Chapter 14, Problem 15STP
Interpretation Introduction

Interpretation:

From, the given information, orbital diagram of silicon is to be drawn and Hund’s rule and pauli exclusion principle needs to explain that helps in orbital diagram drawing.

Concept introduction:

Hund’s rule: Hund’s rule states that no electron will pair up in an orbital, unless and until each orbital of a given subshell contains one electron each or is singly occupied.

Pauli exclusion principle:

According to Pauli exclusion principle an orbital can not have both the electron in same spin. electrons will be either half positive(+1/2) or half negative spin(-1/2).

Expert Solution & Answer
Check Mark

Answer to Problem 15STP

Glencoe Chemistry: Matter and Change, Student Edition, Chapter 14, Problem 15STP , additional homework tip  1

Hund’s rule states that the last two electronswill be placed in separate p-orbitals. While Pauliexclusion principal helps in determining that shared electronsin any given orbital must have oppositespins, as shown by up and down arrows.

Hund’s rule: Hund’s rule states that no electron will pair up in an orbital, unless and until each orbital of a given subshell contains one electron each or is singly occupied.

Pauli exclusion principle:

According to Pauli exclusion principle an orbital can not have both the electron in same spin. electrons will be either half positive(+1/2) or half negative spin(-1/2).

The electron configuration for silicon is 1s2 2s2 2p63s2 3p2.

With which and using Hund’s rule and Pauli exclusion principle, orbital diagram formed is:

Glencoe Chemistry: Matter and Change, Student Edition, Chapter 14, Problem 15STP , additional homework tip  2

Hund’s rule states that the last two electrons will be placed in separate p-orbitals as shown in 3p, each orbital of a given subshell contains one electron then pairing of electron takes places.

While Pauli exclusion principal helps in determining that shared electrons in any given orbital must have opposite spins, as shown by up and down arrows in each orbital.

Explanation of Solution

Hund’s rule: Hund’s rule states that no electron will pair up in an orbital, unless and until each orbital of a given subshell contains one electron each or is singly occupied.

Pauli exclusion principle:

According to Pauli exclusion principle an orbital can not have both the electron in same spin. electrons will be either half positive(+1/2) or half negative spin(-1/2).

The electron configuration for silicon is 1s2 2s2 2p63s2 3p2.

With which and using Hund’s rule and Pauli exclusion principle, orbital diagram formed is:

Glencoe Chemistry: Matter and Change, Student Edition, Chapter 14, Problem 15STP , additional homework tip  3

Hund’s rule states that the last two electrons will be placed in separate p-orbitals as shown in 3p, each orbital of a given subshell contains one electron then pairing of electron takes places.

While Pauli exclusion principal helps in determining that shared electrons in any given orbital must have opposite spins, as shown by up and down arrows in each orbital.

Chapter 14 Solutions

Glencoe Chemistry: Matter and Change, Student Edition

Ch. 14.2 - Prob. 11PPCh. 14.2 - Prob. 12PPCh. 14.2 - Prob. 13PPCh. 14.2 - Prob. 14PPCh. 14.2 - Prob. 15PPCh. 14.2 - Prob. 16PPCh. 14.2 - Prob. 17PPCh. 14.2 - Prob. 18PPCh. 14.2 - Prob. 19PPCh. 14.2 - Prob. 20PPCh. 14.2 - Prob. 21PPCh. 14.2 - Prob. 22PPCh. 14.2 - Prob. 23PPCh. 14.2 - Prob. 24PPCh. 14.2 - Prob. 25PPCh. 14.2 - Prob. 26PPCh. 14.2 - Prob. 27PPCh. 14.2 - Prob. 28PPCh. 14.2 - Prob. 29PPCh. 14.2 - Prob. 30PPCh. 14.2 - Prob. 31SSCCh. 14.2 - Prob. 32SSCCh. 14.2 - Prob. 33SSCCh. 14.2 - Prob. 34SSCCh. 14.2 - Prob. 35SSCCh. 14.3 - Prob. 36PPCh. 14.3 - Prob. 37PPCh. 14.3 - Prob. 38PPCh. 14.3 - Prob. 39SSCCh. 14.3 - Prob. 40SSCCh. 14.3 - Prob. 41SSCCh. 14.3 - Prob. 42SSCCh. 14.3 - Prob. 43SSCCh. 14.3 - Prob. 44SSCCh. 14.4 - Prob. 45PPCh. 14.4 - Prob. 46PPCh. 14.4 - Prob. 47PPCh. 14.4 - Prob. 48SSCCh. 14.4 - Prob. 49SSCCh. 14.4 - Prob. 50SSCCh. 14.4 - Prob. 51SSCCh. 14.4 - Prob. 52SSCCh. 14.4 - Prob. 53SSCCh. 14 - Prob. 54ACh. 14 - What is the difference between a solute and a...Ch. 14 - Prob. 56ACh. 14 - Prob. 57ACh. 14 - Prob. 58ACh. 14 - Prob. 59ACh. 14 - Prob. 60ACh. 14 - Prob. 61ACh. 14 - Prob. 62ACh. 14 - Prob. 63ACh. 14 - Prob. 64ACh. 14 - How do 0.5M and 2.0M aqueous solutions of NaCl...Ch. 14 - Prob. 66ACh. 14 - Prob. 67ACh. 14 - Prob. 68ACh. 14 - Prob. 69ACh. 14 - Prob. 70ACh. 14 - Prob. 71ACh. 14 - Prob. 72ACh. 14 - Prob. 73ACh. 14 - How much CaCl2 , in grams, is needed to make 2.0 L...Ch. 14 - Stock solutions of HCl with various molarities are...Ch. 14 - Prob. 76ACh. 14 - Prob. 77ACh. 14 - Prob. 78ACh. 14 - If you dilute 20.0 mL of a 3.5M solution to...Ch. 14 - Prob. 80ACh. 14 - Prob. 81ACh. 14 - Prob. 82ACh. 14 - Prob. 83ACh. 14 - What is the mole fraction of H 2 S O 4 in a...Ch. 14 - Prob. 85ACh. 14 - Prob. 86ACh. 14 - Prob. 87ACh. 14 - Prob. 88ACh. 14 - Prob. 89ACh. 14 - Prob. 90ACh. 14 - Prob. 91ACh. 14 - Prob. 92ACh. 14 - Prob. 93ACh. 14 - Prob. 94ACh. 14 - Prob. 95ACh. 14 - Prob. 96ACh. 14 - Prob. 97ACh. 14 - Prob. 98ACh. 14 - Prob. 99ACh. 14 - In the lab, you dissolve 179 g of MgCl2 into1.00 L...Ch. 14 - Cooking A cook prepares a solution for boiling by...Ch. 14 - Prob. 102ACh. 14 - Ice Cream A rock salt (NaCl), ice, and water...Ch. 14 - Apply your knowledge of polarity and solubility...Ch. 14 - Prob. 105ACh. 14 - Which solute has the greatest effect on the...Ch. 14 - Study Table 14.4. Analyze solubility and...Ch. 14 - Prob. 108ACh. 14 - If you prepared a saturated aqueous solution of...Ch. 14 - How many grams of calcium nitrate (Ca(NO3)2)...Ch. 14 - Prob. 111ACh. 14 - Prob. 112ACh. 14 - Prob. 113ACh. 14 - Prob. 114ACh. 14 - Infer Dehydration occurs when more fluid is lost...Ch. 14 - Graph Table 14.10 shows solubility data that was...Ch. 14 - Design an Experiment You are given a sample of a...Ch. 14 - Compare Which of the following solutions has...Ch. 14 - Prob. 119ACh. 14 - Prob. 120ACh. 14 - Prob. 121ACh. 14 - Prob. 122ACh. 14 - Prob. 123ACh. 14 - Prob. 124ACh. 14 - Prob. 125ACh. 14 - Prob. 126ACh. 14 - Prob. 127ACh. 14 - Prob. 128ACh. 14 - Prob. 129ACh. 14 - Prob. 1STPCh. 14 - Prob. 2STPCh. 14 - Prob. 3STPCh. 14 - Prob. 4STPCh. 14 - Prob. 5STPCh. 14 - Prob. 6STPCh. 14 - Prob. 7STPCh. 14 - Prob. 8STPCh. 14 - Prob. 9STPCh. 14 - Prob. 10STPCh. 14 - Prob. 11STPCh. 14 - Prob. 12STPCh. 14 - Prob. 13STPCh. 14 - Prob. 14STPCh. 14 - Prob. 15STPCh. 14 - Prob. 16STPCh. 14 - Prob. 17STPCh. 14 - Prob. 18STPCh. 14 - Prob. 19STP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY