Fluid Mechanics: Fundamentals and Applications
4th Edition
ISBN: 9781259696534
Author: Yunus A. Cengel Dr., John M. Cimbala
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 130P
To determine
The net head loss of the pump.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The brake horsepower and water horsepower of a pump are determined to be 15 kW and 12 kW, respectively. If the flow rate of water to the pump under these conditions is 0.05 m3/s, the total head loss of the pump is (a) 11.5 m (b) 9.3 m (c) 7.7 m (d) 6.1 m (e) 4.9 m
A hydropower plant will be built in a river with average flow rate (qv) of 400 m3/s and head (H) of 25 m over the plant. Ratio between maximum flow rate through turbines and river average flow rate (R) is chosen as 1.3. The plant will be equipped with three similar turbines in parallel, the rotational speed of each turbine is 150 rpm, and the runner blade tip tangential speed (U) is assumed to be 1.5 times the ideal discharge velocity with the given head. With the given information
calculate:
Theoretical power of the plant with the average flow rate of the river (MW)?
Turbine specific speed nq?
Turbine runner diameter (m)?
A pump is to deliver 80 GPM of water at a density of 61. 831b/ft cubed with a discharge pressure of 150 psig.
Suction pressure indicates a 2 HG vacuum. The diameter of the suction and the discharge are 5 in. and 4 in. respectively.
The pump has an efficiency of 70% while the motor efficiency is 80%. Determine the (a) water horsepower of the pump (b) bhp of pump motor (c) power input to drive the motor.
Chapter 14 Solutions
Fluid Mechanics: Fundamentals and Applications
Ch. 14 - What is the more common term for an...Ch. 14 - What the primary differences between fans,...Ch. 14 - List at least two common examples of fans, of...Ch. 14 - Discuss the primary difference between a porn...Ch. 14 - Explain why there is an “extra” term in the...Ch. 14 - For a turbine, discuss the difference between...Ch. 14 - Prob. 7CPCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10CP
Ch. 14 - There are three main categories of dynamic pumps....Ch. 14 - For each statement about cow cetrifugal the...Ch. 14 - Prob. 13CPCh. 14 - Consider flow through a water pump. For each...Ch. 14 - Write the equation that defines actual (available)...Ch. 14 - Consider a typical centrifugal liquid pump. For...Ch. 14 - Prob. 17CPCh. 14 - Consider steady, incompressible flow through two...Ch. 14 - Prob. 19CPCh. 14 - Prob. 20PCh. 14 - Suppose the pump of Fig. P1 4-19C is situated...Ch. 14 - Prob. 22PCh. 14 - Prob. 23EPCh. 14 - Consider the flow system sketched in Fig. PI 4-24....Ch. 14 - Prob. 25PCh. 14 - Repeat Prob. 14-25, but with a rough pipe-pipe...Ch. 14 - Consider the piping system of Fig. P14—24. with...Ch. 14 - The performance data for a centrifugal water pump...Ch. 14 - For the centrifugal water pump of Prob. 14-29,...Ch. 14 - Suppose the pump of Probs. 14-29 and 14-30 is used...Ch. 14 - Suppose you are looking into purchasing a water...Ch. 14 - The performance data of a water pump follow the...Ch. 14 - For the application at hand, the flow rate of...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - For the pump and piping system of Prob. 14-35E,...Ch. 14 - A water pump is used to pump water from one large...Ch. 14 - Suppose that the free surface of the inlet...Ch. 14 - Calculate the volume flow rate between the...Ch. 14 - Comparing the results of Probs. 14-39 and 14-43,...Ch. 14 - Prob. 45PCh. 14 - The performance data for a centrifugal water pump...Ch. 14 - Transform each column of the pump performance data...Ch. 14 - 14-51 A local ventilation system (a hood and duct...Ch. 14 - Prob. 52PCh. 14 - Repeat Prob. 14-51, ignoring all minor losses. How...Ch. 14 - Suppose the one- way of Fig. P14-51 malfunctions...Ch. 14 - A local ventilation system (a hood and duct...Ch. 14 - For the duct system and fan of Prob. 14-55E,...Ch. 14 - Repeat Prob. 14-55E, ignoring all minor losses....Ch. 14 - A self-priming centrifugal pump is used to pump...Ch. 14 - Repeat Prob. 14-60. but at a water temperature of...Ch. 14 - Repeat Prob. 14-60, but with the pipe diameter...Ch. 14 - Prob. 63EPCh. 14 - Prob. 64EPCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Prob. 68PCh. 14 - Prob. 69PCh. 14 - Two water pumps are arranged in Series. The...Ch. 14 - The same two water pumps of Prob. 14-70 are...Ch. 14 - Prob. 72CPCh. 14 - Name and briefly describe the differences between...Ch. 14 - Discuss the meaning of reverse swirl in reaction...Ch. 14 - Prob. 75CPCh. 14 - Prob. 76CPCh. 14 - Prob. 77PCh. 14 - Prob. 78PCh. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - Wind ( =1.204kg/m3 ) blows through a HAWT wind...Ch. 14 - Prob. 82PCh. 14 - Prob. 84CPCh. 14 - A Francis radial-flow hydroturbine has the...Ch. 14 - Prob. 87PCh. 14 - Prob. 88PCh. 14 - Prob. 89PCh. 14 - Prob. 90CPCh. 14 - Prob. 91CPCh. 14 - Discuss which dimensionless pump performance...Ch. 14 - Prob. 93CPCh. 14 - Prob. 94PCh. 14 - Prob. 95PCh. 14 - Prob. 96PCh. 14 - Prob. 97PCh. 14 - Prob. 98PCh. 14 - Prob. 99PCh. 14 - Prob. 100EPCh. 14 - Prob. 101PCh. 14 - Calculate the pump specific speed of the pump of...Ch. 14 - Prob. 103PCh. 14 - Prob. 104PCh. 14 - Prob. 105PCh. 14 - Prob. 106PCh. 14 - Prob. 107EPCh. 14 - Prob. 108PCh. 14 - Prob. 109PCh. 14 - Prob. 110PCh. 14 - Prove that the model turbine (Prob. 14-109) and...Ch. 14 - Prob. 112PCh. 14 - Prob. 113PCh. 14 - Prob. 114PCh. 14 - Prob. 115CPCh. 14 - Prob. 116CPCh. 14 - Prob. 117CPCh. 14 - Prob. 118PCh. 14 - For two dynamically similar pumps, manipulate the...Ch. 14 - Prob. 120PCh. 14 - Prob. 121PCh. 14 - Prob. 122PCh. 14 - Calculate and compare the turbine specific speed...Ch. 14 - Prob. 124PCh. 14 - Prob. 125PCh. 14 - Prob. 126PCh. 14 - Prob. 127PCh. 14 - Prob. 128PCh. 14 - Prob. 129PCh. 14 - Prob. 130PCh. 14 - Prob. 131PCh. 14 - Prob. 132PCh. 14 - Prob. 133PCh. 14 - Prob. 134PCh. 14 - Prob. 135PCh. 14 - A two-lobe rotary positive-displacement pump moves...Ch. 14 - Prob. 137PCh. 14 - Prob. 138PCh. 14 - Prob. 139PCh. 14 - Prob. 140PCh. 14 - Which choice is correct for the comparison of the...Ch. 14 - Prob. 142PCh. 14 - In a hydroelectric power plant, water flows...Ch. 14 - Prob. 144PCh. 14 - Prob. 145PCh. 14 - Prob. 146PCh. 14 - Prob. 147PCh. 14 - Prob. 148PCh. 14 - Prob. 149PCh. 14 - Prob. 150PCh. 14 - Prob. 151P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- ASAP A centrifugal pump that is used in pumping water to a tank operates at a rate of 1 gpm. The pump is driven directly by an electric motor with an input power of 1.5 hp running at a speed of 1700 rpm. The total head loss of the system is 10 m. If the motor drives the pump at 2200 rpm, what is the rate of flow of the pump?arrow_forwardA pump is to deliver 80 GPM of water at a density of 61. 83lb/ft3 with a discharge pressure of 150 psig. Suction pressure indicates a 2 HG vacuum. The diameter of the suction and the discharge are 5 in. and 4 in. respectively. The pump has an efficiency of 70% while the motor efficiency is 80%. Determine the (a) water horsepower of the pump (b) bhp of the pump motor (c) power input to drive the motor.arrow_forward115 m turbine 2 In the above example problem, a hydroelectric turbine at the base of a dam is shown schematically. The height of the water above the turbine station given as 115 m. This turbine produces 4.6 MW of electricity, and you may assume the losses in the system to be equivalent to 10 m of head of water. The diameter of the pipe at the turbine exit is 0.75 m, and the velocity of water exiting from the pipe is 12.5 m/s. Caleulate the efficiency of the turbine.arrow_forward
- A centrifugal pump that is used in pumping water to a tank operates at a rate of 1 gpm. The pump is driven directly by an electric motor with an input power of 1.5 hp running at a speed of 1700 rpm. The total head loss of the system is 10 m. If the motor drives the pump at 2200 rpm. What would be the increase in the input power of the pump?arrow_forwardThe motor of a pump consumes 1.05 hp of electricity. The pump increases the pressure of water from 120 kPa to 1100 kPa at a rate of 35 L/min. If the motor efficiency is 94 percent, the pump efficiency is (a) 0.75 (b) 0.78 (c) 0.82 (d) 0.85 (e) 0.88arrow_forwardanswer 2nd item onlyarrow_forward
- In a large pumped hydro plant, the head from the turbine to the lake surface is 100m. During a period of 8 hours of excess electricity in the grid the pumped hydro plant pumps water back into the top reservoir. If the combined efficiency of the pump is 70% and the plant has a capacity of 50 MW how much water is pumped back up to the top reservoir? Assume the head remains constant during pumping. A. 0.5 x 10 – 1.0 x 10 m B. 1.1 x 10 – 1.5 x 10° m C. 1.6 x 105 - 2.0 x 10 m D. 2.1 x 10° - 2.5 x 10 m3arrow_forwardA centrifugal pump driven by a 120-kW motor rotating at 2400 rpm is used to pump 20°C water in a manufacturing plant. The pump operates against a head of 30 m and has an efficiency of 70%. If this pump is situated 9 m below the level of the source, calculate (Zs)max and determine if the pump is safe from cavitation. Select one: O a. -7.9 m; NOT SAFE O b. -9.7 m; NOT SAFE O c. -7.9 m; SAFE O d. -9.7 m; SAFEarrow_forwardThe hydraulic motor has a displacement volume. (Displacement Volume) is 130 x 10-6 m³/rey and the pressure in the system is 105 x 105 Pa and has a speed of 33.34 rey / S if the actual flow rate of the hydraulic motor is 0.005 m³ /s and the actual torque is 200. Nm Find 1. Volumetric efficiency of a hydraulic motor 2. Mechanical efficiency 3. Total efficiency of a hydraulic motor 4. Power of Hydraulic motorarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license