Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.3, Problem 13.5CQ
The expected damages associated with two types of perfectly plastic collisions are to be compared. In the first case, two identical cars traveling at the same speed impact each other head-on. In the second case, the car impacts a massive concrete wall. In which case would you expect the car to be more damaged?
- a. Case 1
- b. Case 2
- c. The same damage in each case
Fig.P13.CQ5
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Oblique Impact
To analyze an oblique impact using the conservation of momentum and coefficient of restitution.
When an oblique impact occurs between two smooth particles, the particles move away from each other with velocity vectors that have unknown directions and unknown magnitudes. If the y axis is within the plane of contact and the x axis is the line of impact, the impulsive forces of deformation and restitution act only along the line of impact (the x axis). Momentum of the system is conserved along the line of impact (the x axis):
∑m(vx)1=∑m(vx)2
The coefficient of restitution, e, relates the relative-velocity components of the particles along the line of impact (the x axis):
e=(vBx)2−(vAx)2(vAx)1−(vBx)1
The momenta of both particles A and B are conserved in the plane of contact (the y axis) because no impulse acts on either particle in this plane. Therefore, the y component of the velocities before and after the collisions remains unchanged:
(vy)1=(vy)2
As shown,…
Oblique Impact
To analyze an oblique impact using the conservation of momentum and coefficient of restitution.
When an oblique impact occurs between two smooth particles, the particles move away from each other with velocity vectors that have unknown directions and unknown magnitudes. If the y axis is within the plane of contact and the x axis is the line of impact, the impulsive forces of deformation and restitution act only along the line of impact (the x axis). Momentum of the system is conserved along the line of impact (the x axis):
∑m(vx)1=∑m(vx)2
The coefficient of restitution, e, relates the relative-velocity components of the particles along the line of impact (the x axis):
e=(vBx)2−(vAx)2(vAx)1−(vBx)1
The momenta of both particles A and B are conserved in the plane of contact (the y axis) because no impulse acts on either particle in this plane. Therefore, the y component of the velocities before and after the collisions remains unchanged:
Immediately after the collision,…
shpl19 shpl
5. A cue ball traveling at 0.65 m/s hits the stationary 8-ball, which moves off with a speed of 0.22 m/s at an angle of 30° relative
shpl19 shpil
to the cue ball's initial direction. Assuming that the balls have equal masses and the collision is inelastic, what will be the speed of
the cue ball?
m/s
9 shp
shpl19 shpl
hpl19 shpll9
Chapter 13 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 13.1 - Block A is traveling with a speed v0 on a smooth...Ch. 13.1 - A 400-kg satellite is placed in a circular orbit...Ch. 13.1 - Prob. 13.2PCh. 13.1 - Prob. 13.3PCh. 13.1 - A 500-kg communications satellite is in a circular...Ch. 13.1 - Prob. 13.5PCh. 13.1 - 13.6 In an ore-mixing operation, a bucket full of...Ch. 13.1 - Prob. 13.7PCh. 13.1 - A 2000-kg automobile starts from rest at point A...Ch. 13.1 - Prob. 13.9P
Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Prob. 13.12PCh. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - Prob. 13.16PCh. 13.1 - Prob. 13.17PCh. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - Prob. 13.19PCh. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - Prob. 13.22PCh. 13.1 - Prob. 13.23PCh. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg,...Ch. 13.1 - Prob. 13.25PCh. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26, assuming that the 2-kg block is...Ch. 13.1 - Prob. 13.28PCh. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - Prob. 13.32PCh. 13.1 - Prob. 13.33PCh. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Prob. 13.35PCh. 13.1 - Prob. 13.36PCh. 13.1 - Prob. 13.37PCh. 13.1 - Prob. 13.38PCh. 13.1 - Prob. 13.39PCh. 13.1 - The sphere at A is given a downward velocity v0...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42, determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - Prob. 13.45PCh. 13.1 - Prob. 13.46PCh. 13.1 - Prob. 13.47PCh. 13.1 - Prob. 13.48PCh. 13.1 - Prob. 13.49PCh. 13.1 - Prob. 13.50PCh. 13.1 - A 1400-kg automobile starts from rest and travels...Ch. 13.1 - Prob. 13.52PCh. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - Prob. 13.3CQCh. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - Prob. 13.58PCh. 13.2 - Prob. 13.59PCh. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28,...Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - It is shown in mechanics of materials that the...Ch. 13.2 - Prob. 13.64PCh. 13.2 - A 500-g collar can slide without friction along...Ch. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - 13.70 A section of track for a roller coaster...Ch. 13.2 - 13.71 A section of track for a roller coaster...Ch. 13.2 - A 1-lb collar is attached to a spring and slides...Ch. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.74PCh. 13.2 - Prob. 13.75PCh. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - Prob. 13.78PCh. 13.2 - Prove that a force F(x, y, z) is conservative if,...Ch. 13.2 - The force F = (yzi + zxj + xyk)/xyz acts on the...Ch. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - Prob. 13.85PCh. 13.2 - A satellite describes an elliptic orbit of minimum...Ch. 13.2 - While describing a circular orbit 200 mi above the...Ch. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - (a) Show that, by setting r = R + y in the...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - A governor is designed so that the valve of...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - Using the principles of conservation of energy and...Ch. 13.2 - Prob. 13.99PCh. 13.2 - A spacecraft is describing an elliptic orbit of...Ch. 13.2 - While describing a circular orbit, 185 mi above...Ch. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - A space vehicle is in a circular orbit at an...Ch. 13.2 - Prob. 13.111PCh. 13.2 - Show that the values vA and vP of the speed of an...Ch. 13.2 - Show that the total energy E of an earth satellite...Ch. 13.2 - A space probe describes a circular orbit of radius...Ch. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass m describes a circular orbit...Ch. 13.2 - Using the answers obtained in Prob. 13.108, show...Ch. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - Prob. 13.1IMDCh. 13.3 - Prob. 13.2IMDCh. 13.3 - Prob. 13.3IMDCh. 13.3 - Prob. 13.4IMDCh. 13.3 - Prob. 13.5IMDCh. 13.3 - A 35 000-Mg ocean liner has an initial velocity of...Ch. 13.3 - A 2500-lb automobile is moving at a speed of 60...Ch. 13.3 - Prob. 13.121PCh. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Prob. 13.125PCh. 13.3 - The 18 000-kg F-35B uses thrust vectoring to allow...Ch. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - Prob. 13.129PCh. 13.3 - Prob. 13.130PCh. 13.3 - A tractor-trailer rig with a 2000-kg tractor, a...Ch. 13.3 - Prob. 13.132PCh. 13.3 - An 8-kg cylinder C rests on a 4-kg platform A...Ch. 13.3 - An estimate of the expected load on...Ch. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - Prob. 13.136PCh. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - Prob. 13.140PCh. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - The last segment of the triple jump...Ch. 13.3 - The design for a new cementless hip implant is to...Ch. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - 13.145 A 25-ton railroad car moving at 2.5 mi/h is...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Bullet B weighs 0.5 oz and blocks A and C both...Ch. 13.3 - A 180-lb man and a 120-lb woman stand at opposite...Ch. 13.3 - A 75-g ball is projected from a height of 1.6 m...Ch. 13.3 - A ballistic pendulum is used to measure the speed...Ch. 13.3 - Prob. 13.153PCh. 13.3 - Prob. 13.154PCh. 13.4 - A 5-kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - A sphere with a speed v0 rebounds after striking a...Ch. 13.4 - Prob. 13.7IMDCh. 13.4 - Prob. 13.8IMDCh. 13.4 - A 10-kg ball A moving horizontally at 12 m/s...Ch. 13.4 - Prob. 13.10IMDCh. 13.4 - Prob. 13.155PCh. 13.4 - Prob. 13.156PCh. 13.4 - Prob. 13.157PCh. 13.4 - Prob. 13.158PCh. 13.4 - To apply shock loading to an artillery shell, a...Ch. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Prob. 13.161PCh. 13.4 - At an amusement park, there are 200-kg bumper cars...Ch. 13.4 - At an amusement park there are 200-kg bumper cars...Ch. 13.4 - Prob. 13.164PCh. 13.4 - 13.165 Two identical pool balls with a 2.37-in....Ch. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - Prob. 13.168PCh. 13.4 - Prob. 13.169PCh. 13.4 - Prob. 13.170PCh. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Prob. 13.172PCh. 13.4 - From experimental tests, smaller boulders tend to...Ch. 13.4 - Prob. 13.174PCh. 13.4 - A 1-kg block B is moving with a velocity v0 of...Ch. 13.4 - A 0.25-lb ball thrown with a horizontal velocity...Ch. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Prob. 13.178PCh. 13.4 - A 5-kg sphere is dropped from a height of y = 2 m...Ch. 13.4 - A 5-kg sphere is dropped from a height of y = 3 m...Ch. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - Prob. 13.183PCh. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Ball B is hanging from an inextensible cord. An...Ch. 13.4 - A 70-g ball B dropped from a height h0 = 1.5 m...Ch. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of = 30, the 1-lb...Ch. 13.4 - When the rope is at an angle of = 30, the 1-kg...Ch. 13 - Prob. 13.190RPCh. 13 - Prob. 13.191RPCh. 13 - Prob. 13.192RPCh. 13 - Prob. 13.193RPCh. 13 - 13.194 A 50-lb sphere A with a radius of 4.5 in....Ch. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - Prob. 13.197RPCh. 13 - Prob. 13.198RPCh. 13 - A 2-kg ball B is traveling horizontally at 10 m/s...Ch. 13 - A 2-kg block A is pushed up against a spring...Ch. 13 - The 2-lb ball at A is suspended by an inextensible...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Most collisions are inelastic, meaning the kinetic energy is not conserved in the system. (a) What are the three most common ways for energy to leave a system during a collision? To the best of my knowledge, the use of the word "perfectly" in a perfectly elastic collision is not necessary. Any elastic collision is a perfectly elastic collision. Both concepts mean the kinetic energy is conserved. The use of the word "perfectly" in perfectly inelastic collisions is just telling you that the two objects end up sticking to each other (have the same final velocity). (b) Combine the equations for the 1-D conservation of linear momentum and the conservation of kinetic energy to create a third equation. Any two of these equations now contain all the information, so the three equations are said to be linearly dependent in math-speak. This means we only need to use any two equations for our solutions, naturally we will chose the simplest two. (c) Use two of these equations along with…arrow_forwardChoose the correct answer of the following questions: 1. If no external impressed force acts on the system, the total momentum (G) of a system ... c. remains constant a. increases b. decreases d. none of the these 2. Which of the following cases momentum is conserved? (1 M) a. Perfectly elastic impact d. Momentum is always conserved c. Perfectly inelastic impact b. plastic impact with 0arrow_forwardGiven: • Mass of particle 1 = 0.35 kg, starting velocity of particle 1 = 2.1 m/s Mass of particle 2 = 2.10 kg, starting velocity of particle 2 = -1.1 m/s • coefficient of restitution = 0.40 (elasticity percent) Find: . • Velocity of particle 2 after collision = _______ m/s • + if moving to the right, - if moving to the leftarrow_forwardI Review I Constants While a roofer is working on a roof that slants at 37.0° above the horizontal, he accidentally nudges his 88.0 N toolbox, causing it to start sliding downward, starting from rest. Part A If it starts 4.00 m from the lower edge of the roof, how fast will the toolbox be moving just as it reaches the edge of the roof if the kinetic friction force on it is 20.0 N? Express your answer in meters per second. V = m/s Submit Request Answer Provide Feedback Next >arrow_forward7. During impact, particles collide with a very short interaction period. The interparticle impulse during an impact collision includes a deformation impulse as particles undergo some combination of elastic and plastic deformation plus a restitution impulse during which some portion of of the deformation is reversed. The magnitude of the restitution impulse is always greater than that of the deformation impulse. True Falsearrow_forwardENGINEERING MECHANICS (DYNAMICS)100% GUARANTEE UPVOTE IF ANSWER IN 1 HOUR AND 30 MINUTES.. COMPLETE SOLUTION SHORTCUT IF NECESSARYarrow_forwardQuestion 7. Characteristics of Two Collisions of Pucks on an Air Table Collision I A stationary puck, Puck I, is struck by a second puck, Puck II. The mass of Puck II is twice that of Puck I. The force of friction in this collision is negligible. Collision II Two moving pucks, Puck I and Puck II, collide head on. The masses of Puck I and Puck II are equal. After the collision, each puck bounces back in the direction opposite to its original direction. The force of friction in this collision is negligible. For Collision I, the magnitude of the impulse of Puck I on Puck II is i the magnitude of the impulse of Puck II on Puck I. For Collision II, the magnitude of the impulse of Puck I on Puck II is ii the magnitude of the impulse of Puck II on Puck I. The statements above are completed by the information in row Row A. B. C. D. i equal to equal to less than less than ii equal to less than equal to less thanarrow_forwardProblem 10: A block of mass m;=19.5 kg slides along a horizontal surface (with friction, u =D0.31) a distance d= 2.25 m before striking a second block of mass m2 = 8.75 kg. The first block has an initial velocity of v= 7.75 m/s. V m, m2 ©theexpertta.com i Part (a) Assuming that block one stops after it collides with block two, what is block two's velocity after impact in m/s? V2 sin() cos() tan() 8. HOME cotan() asin() acos() E 1 4 atan() acotan() sinh() 1 2 cosh() tanh() cotanh() END Degrees O Radians VO BACKSPACE DEL CLEAR Submit Hint Feedback I give up! Part (b) How far does block two travel, d, in meters, before coming to rest after the collision? Alleontant MTAIC 「|t|器 9 63arrow_forward6. (5) A packaged product is dropped from 28 inches, impacts the floor, and rebounds to a height of 8 inches. What is the coefficient of restitution of the impact?arrow_forward2.) A test car furnished with antilock braking system stops at 88 m distance when brakes are applied at 100 km/h speed while travelling down a 3% grade on a test track with poor, wet pavement. During one of the tests at the same speed, the test car impacted an object at 100 m distance from the point of brake application on the same test track. The investigators found out that the antilock brake system failed 60 m after the brakes had been applied. What speed was the car travelling at just before it impacted the object? Notes: i. Assume theoretical braking distance ii. coefficient of road adhesion (maximum) = 0.60, coefficient of road adhesion (sliding) = 0.30, coefficient of rolling resistance = 0.015, ii. iv. V. mass factor = 1.04arrow_forwardNumber 8.7 and 8.8 please and 8.3arrow_forwardThree blocks (1,2,3) of mass 3.00 kg, 2.00 kg, 1.00 kg sit block 1 block 2 block 3 linearly 10.0 cm apart from each other on a frictionless surface. •> 3kg A 25 g bullet is shot at the first block, it travels through the first block, and embeds itself into the second block (without falling over) which then collides into the third block. a. Assuming the final collision is elastic, and the third block has a final velocity of 5.00 m/s, what is the velocity of block 2 just before it collides into block 3? b. What is the velocity of the bullet before it embeds itself into block 2? c. Assuming the bullet slowed down by only 10% while it travelled through block 1, what was the speed of block 1 after the bullet traveled through it?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY