Concept explainers
A 7.5-lb collar is released from rest in the position shown, slides down the inclined rod, and compresses the spring. The direction of motion is reversed and the collar slides up the rod. Knowing that the maximum deflection of the spring is 5 in., determine (a) the coefficient of kinetic friction between the collar and the rod, (b) the maximum speed of the collar.
Fig. P13.29
(a)
Find the coefficient of kinetic friction between the collar and rod
Answer to Problem 13.29P
The coefficient of kinetic friction between the collar and rod
Explanation of Solution
Given information:
The weight of the collar
The maximum deflection of the spring (x) is
The distance between the spring and collar (d) is
The spring constant (k) is
The angle of the inclined rod
Assume the acceleration due to gravity (g) is
Calculation:
Show the free body diagram of the inclined rod with the forces acting as in Figure (1).
Here, the initial kinetic energy
Calculate the work done
Here, F is the frictional force.
Substitute
Substitute
Substitute
Calculate the work done
Substitute
Calculate the work done
Substitute
Calculate the total work done
Substitute
Use work and energy principle which states that kinetic energy of the particle at a displaced point can be obtained by adding the initial kinetic energy and the work done on the particle during its displacement.
Find the coefficient of kinetic friction between the collar and rod
Substitute 0 for
Therefore, the coefficient of kinetic friction between the collar and rod
(b)
Find the maximum speed
Answer to Problem 13.29P
The maximum speed
Explanation of Solution
Given information:
The weight of the collar
The maximum deflection of the spring (x) is
The distance between the spring and collar (d) is
The spring constant (k) is
The angle of the inclined rod
Assume the acceleration due to gravity (g) is
Calculation:
Calculate the kinetic energy
Substitute
Calculate the work done
Here, F is the frictional force.
Substitute
Substitute
Substitute
Calculate the work done
Substitute
Calculate the total work done
Substitute
Substitute 0.159 for
Use work and energy principle which states that kinetic energy of the particle at a displaced point can be obtained by adding the initial kinetic energy and the work done on the particle during its displacement.
Find the maximum speed
Substitute 0 for
Therefore, the maximum speed
Want to see more full solutions like this?
Chapter 13 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- Question 1. A spring is used to stop a 60 kg package which is sliding on a horizontal surface. The spring has a constant k = 20 kN/m and is held by cables so that it is initially compressed 120 mm. The package has a velocity of 2.5 m/s in the position shown and the maximum deflection of the spring is 40 mm. Determine (a) the coefficient of kinetic friction between the package and surface and (b) the velocity of the package as it passes again through the position shown. 2.5 m/s Cable 60 kg- 600 mm-arrow_forwardA spring is used to stop a 60-kg package that is sliding on a horizontal surface. The spring has a constant k = 20 kN/m and is held by cables so that it is initially compressed 120 mm. The package has a velocity of 2.5 m/s in the position shown, and the maximum additional deflection of the spring is 40 mm. Determine (a) the coefficient of kinetic friction between the package and the surface, (b) the velocity of the package as it passes again through the position shown.arrow_forwardA thin circular rod is supported in a vertical plane by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant k= 3 lb/ft and undeformed length equal to the arc of circle AB. An 8-oz collar C , not attached to the spring, can slide without friction along the rod. Knowing that the collar is released from rest at an angle 0 with the vertical, determine (a) the smallest value of 0 for which the collar will pass through D and reach point A, (b) the velocity of the collar as it reaches point A.arrow_forward
- applied mechanics 2arrow_forwardA series of small packages, each with a mass of 0.5 kg, are discharged from a conveyor belt as shown. Knowing that the coefficient of static friction between each package and the conveyor belt is 0.4, determine (a) the force exerted by the belt on the package just after it has passed point A, (b) the angle 0 defining the point B where the packages first slip relative to the belt.arrow_forwardProblem 12.F11 Disk A rotates in a horizontal plane about a vertical axis at the constant rate. Slider B has a mass m and moves in a frictionless slot cut in the disk. The slider is attached to a spring of constant k, which is undeformed when r = 0. Knowing that the slider is released with no radial velocity in the position r=ro, draw a FBD and KD at an arbitrary distance r from O. Spring Fig. P12.F11 60arrow_forward
- In the system shown, a 150 N collar-pulley assembly slides on a horizontal shaft with coefficient of kinetic friction μk = 0.10 between the collar and the shaft, and is acted upon by a force P with a magnitude of P = 303.887 N at an angle θ = 35.38° as shown. Knowing that the assembly is initially at rest, what is the time when the velocity reaches to 3 m/s? what is the velocity of collar ? after 3 seconds? Also, at this instant, find the tension in the cord and the velocity of block A.arrow_forwardThree spheres, each with a mass of m , can slide freely on a frictionless, horizontal surface. Spheres A and B are attached to an inextensible, inelastic cord with a length I and are at rest in the position shown when sphere B is struck squarely by sphere C , which is moving with a velocity v0 . Knowing that the cord is taut when sphere B is struck by sphere C and assuming perfectly elastic impact between B and C , and thus the conservation of energy for the entire system, determine the velocity of each sphere immediately after impact.arrow_forwardA crash test is performed between an SUV A and a 2500-lb compact car B. The compact car is stationary before the impact and has its brakes applied. A transducer measures the force during the impact, and the force P varies as shown. Knowing that the coefficients of friction between the tires and the road are μs= 0.9 and μs = 0.7, determine (a) the time at which the compact car will start moving, (b) the maximum speed of the car, (c) the time at which the car will come to a stop.arrow_forward
- A series of small packages, each with a mass of 0.5 kg, are discharged from a conveyor belt as shown. Knowing that the coefficient of static friction between each package and the conveyor belt is 0.4, determine (a) the force exerted by the belt on the package just after it has passed point A, (b) the angle 0 defining the point B where the packages first slip relative to the belt. 1 m/s А B. 250 mmarrow_forwardA 30-g bullet is fired with a horizontal velocity of 450 m/s and becomes embedded in block B , which has a mass of 3 kg. After the impact, block B slides on 30-kg carrier C until it impacts the end of the carrier. Knowing the impact between B and C is perfectly plastic and the coefficient of kinetic friction between B and C is 0.2, determine (a) the velocity of the bullet and B after the first impact, (b) the final velocity of the carrier.arrow_forwardA 5-kg sphere is dropped from a height of y= 2 m to test newly designed spring floors used in gymnastics. The mass of the floor section is 10 kg, and the effective stiffness of the floor is k= 120 kN/m. Knowing that the coefficient of restitution between the ball and the platform is 0.6, determine (a) the height h reached by the sphere after rebound, (b) the maximum force in the springs.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY