
Concept explainers
(a)
The velocity of block B
(a)

Answer to Problem 13.23P
The velocity of block B
Explanation of Solution
Given information:
The mass of the block A
The mass of the block B
The force (P) acting at block A is 250 N.
The coefficient of static friction between block A and horizontal surface
The coefficient of kinetic friction between block A and horizontal surface
Calculation:
Show the system with the distance as in Figure (1).
When the block A moves one unit left, block B moves 3 units upwards,
Write the expression for the constraint of the cable from Figure (1) as follows:
Here,
Show the free body diagram of block B with all the forces acting on it as in Figure (2).
Check the equilibrium position of the blocks to verify whether the blocks move.
From Figure (2), for block B to remain in equilibrium, the net resultant force acting on the block B should be zero.
Here, g is the acceleration due to gravity and F is the tension in the cable.
Substitute 25 kg for
Show the free body diagram of block B with all the forces acting on it as in Figure (3).
Calculate the net forces acting on the block A in Y-axis direction using the relation:
Here,
Substitute 30 kg for
Calculate the net forces acting on block A in X-axis direction using the relation:
Substitute 250 N for
Calculate the available static friction acting on block A
Substitute 0.25 for
Since
Show the free body diagram of block B with kinetic frictional force acting on it as in Figure (4).
Consider the block A.
The kinetic energy of block A
The expression for the final kinetic energy of the block A
Write the expression for the kinetic frictional force acting on the block A
Write the expression for the work done by the block A
Apply the principle of work and energy to block A.
Work and energy principle states that kinetic energy of the particle at a displaced point can be obtained by adding the initial kinetic energy and the work done on the particle during its displacement.
Write the expression for the work and energy principle as follows:
Substitute 0 for
Substitute 250 N for
Consider the block B.
The kinetic energy of block B
The expression for the final kinetic energy
Write the expression the work done by the block B in moving through a distance of
Apply the principle of work and energy to the block B.
According to the work and energy principle,
Substitute 0 for
Substitute 25 kg for
Add equation (2) and equation (4) to eliminate
Therefore, the velocity of block B
(b)
The tension (F) in the cable.
(b)

Answer to Problem 13.23P
The tension (F) in the cable is
Explanation of Solution
Given information:
The mass of the block A
The mass of the block B
The force (P) acting at block A is 250 N.
The coefficient of static friction between block A and horizontal surface
The coefficient of kinetic friction between block A and horizontal surface
Calculation:
Calculate the tension (F) in the cable:
Substitute
Therefore, the tension (F) in the cable is
Want to see more full solutions like this?
Chapter 13 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- for the values: M1=0.41m, M2=1.8m, M3=0.56m, please account for these in the equations. also please ensure that the final answer is the flow rate in litres per second for each part. please use bernoullis equation where needed if an empirical solutions i srequired. also The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the valuearrow_forwardSolve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forward
- Problem 2: An athlete, starting from rest, pulls handle A to the left with a constant force of P = 150 [N]. Knowing that after the handle A has been pulled 0.5 [m], its velocity is 5 [m/s] to the left, determine: a) A position constraint equation using the given coordinate system. b) An acceleration constraint equation. c) The acceleration of A using kinematics equations. d) The acceleration of B using your constraint equation. e) How much weight (magnitude) the athlete is lifting in pounds using Newton's 2nd Law. You must draw a FBD and KD of the circled assembly, assuming the pulleys are massless. Note: 1 [lbf] = 4.448 [N]. ХА Увarrow_forwardProblem 1: For each of the following images, draw a complete FBD and KD for the specified objects. Then write the equations of motion using variables for all unknowns (e.g., mass, friction coefficient, etc.), plugging in kinematic expressions and simplifying where appropriate. Assume motion in all cases, so any friction would be kinetic. M (a) Blocks A & B (Be careful with acceleration of B relative to accelerating block A) 30° (b) Block A being pulled up my motor M (use rotated rectangular coordinate system) 20° (c) Ball at C, top of swing (use path coordinates) (d) Parasailer/Person (use polar coordinates)arrow_forwardwhere M1=0.41m, M2=1.8m, M3=0.56m, please use bernoulis equation where necessary and The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the value.arrow_forward
- Q3. The attachment shown in Fig.2 is made of 1040 HR. Design the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). All dimensions in mm 120 Fig.2 12 17 b =7.5 5 kN 60 60°arrow_forward15 mm DA 100 mm 50 mm Assuming the load applied P 80 kN. Determine the maximum stress in the bar shown assuming the diameter of the whole A is DA = 25 mm.arrow_forwarduse engineering economic tables, show full solutionarrow_forward
- Do not use chatgpt. I need quick handwritten solution.arrow_forwardSolve this problem and show all of the workarrow_forwardarch Moving to año Question 5 The head-vs-capacity curves for two centrifugal pumps A and B are shown below: Which of the following is a correct statement at a flow rate of 600 ft3/min? Assuming a pump efficiency of 80%. Head [ft] 50 45. 40 CHE 35. 30 25 20 PR 64°F Cloudy 4arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





