Concept explainers
While describing a circular orbit, 185 mi above the surface of the earth, a space shuttle ejects at point A an inertial upper stage (IUS) carrying a communications satellite to be placed in a geosynchronous orbit (see Prob. 13.87) at an altitude of 22,230 mi above the surface of the earth. Determine (a) the velocity of the IUS relative to the shuttle after its engine has been fired at A, (b) the increase in velocity required at B to place the satellite in its final orbit.
Fig. P13.101
(a)
Find the velocity of the IUS relative to the shuttle after its engine has been fired at A
Answer to Problem 13.101P
The velocity of the IUS relative to the shuttle after its engine has been fired at A
Explanation of Solution
Given information:
The distance from above the earth surface to the circular orbit (x) is
The altitude of the geosynchronous orbit (A) is
The radius of the earth (R) is
The acceleration due to gravity (g) is
Calculation:
Convert the unit of radius of earth (R) from miles to feet using the relation:
Here,
Substitute
Write the expression for the force acting on the spacecraft on the surface of the earth due to gravity
Write the expression for calculating the geocentric force acting on the spacecraft when it is on the surface of earth
Here, G is the universal gravitational constant, M is the mass of the earth and
Substitute
Substitute
Write the expression for the centripetal force acting on the space shuttle carrying satellite rotating around the earth at the given altitude as follows:
Here, m is the mass of the space shuttle,
Write the expression for the geocentric force acting on the spacecraft rotating at the given altitude around the earth (F) as follows;
Equate the equations (1) and (2).
Calculate the altitude of the space shuttle from center of earth at position A
Substitute
Calculate the velocity of space shuttle at point A inertial upper stage
Substitute
Calculate the altitude of the space shuttle from center of earth at position A
Substitute
Calculate the velocity of space shuttle at point B
Substitute
Use the principle of conservation of angular momentum states that in the absence of external torque acting on the body, the angular momentum remains constant and no change of the momentum occurs during the entire process.
Find the velocity at B:
Here,
Substitute
Write the expression for the kinetic energy of the space shuttle at point A
Write the expression for the kinetic energy of the space shuttle at point B
Write the expression for the gravitational potential energy of the space shuttle at position A in the path AB
Write the expression for the gravitational potential energy of the space shuttle at position B in the path AB
Use the principle of conservation of energy states that sum of the kinetic and potential energy of a particle remains constant.
Calculate the speed of the space shuttle at position A
Write the expression for the conservation of energy as follows:
Substitute
Find the velocity at A:
Substitute
Consider the equation (1).
Find the velocity at B:
Substitute
Calculate the velocity of the IUS relative to the shuttle after the engine has been fired at point A
Substitute
Therefore, the velocity of the IUS relative to the shuttle after its engine has been fired at A
(b)
Find the increase in velocity required at B
Answer to Problem 13.101P
The increase in velocity required at B
Explanation of Solution
Given information:
The distance from above the earth surface to the circular orbit (x) is
The altitude of the geosynchronous orbit (A) is
The radius of the earth (R) is
The acceleration due to gravity (g) is
Calculation:
Calculate the increase in the velocity required at B to place the satellite in its final orbit
Substitute
Therefore, the increase in velocity required at B
Want to see more full solutions like this?
Chapter 13 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- How do i solve this problem?arrow_forwardQ4/ A compressor is driven motor by mean of a flat belt of thickness 10 mm and a width of 250 mm. The motor pulley is 300 mm diameter and run at 900 rpm and the compressor pulley is 1500 mm diameter. The shaft center distance is 1.5 m. The angle of contact of the smaller pulley is 220° and on the larger pulley is 270°. The coefficient of friction between the belt and the small pulley is 0.3, and between the belt and the large pulley is 0.25. The maximum allowable belt stress is 2 MPa and the belt density is 970 kg/m³. (a) What is the power capacity of the drive and (b) If the small pulley replaced by V-grooved pulley of diameter 300 mm, grooved angle of 34° and the coefficient of friction between belt and grooved pulley is 0.35. What will be the power capacity in this case, assuming that the diameter of the large pulley remain the same of 1500 mm.arrow_forwardYou are tasked with designing a power drive system to transmit power between a motor and a conveyor belt in a manufacturing facility as illustrated in figure. The design must ensure efficient power transmission, reliability, and safety. Given the following specifications and constraints, design drive system for this application: Specifications: Motor Power: The electric motor provides 10 kW of power at 1,500 RPM. Output Speed: The output shaft should rotate at 150 rpm. Design Decisions: Transmission ratio: Determine the necessary drive ratio for the system. Shaft Diameter: Design the shafts for both the motor and the conveyor end. Material Selection: Choose appropriate materials for the gears, shafts. Bearings: Select suitable rolling element bearings. Constraints: Space Limitation: The available space for the gear drive system is limited to a 1-meter-long section. Attribute 4 of CEP Depth of knowledge required Fundamentals-based, first principles analytical approach…arrow_forward
- - | العنوان In non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and v.-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: ti: final thickness V. Fig. (1) ofthrearrow_forwardA direct extrusion operation produces the cross section shown in Fig. (2) from an aluminum billet whose diameter 160 mm and length - 700 mm. Determine the length of the extruded section at the end of the operation if the die angle -14° 60 X Fig. (2) Note: all dimensions in mm.arrow_forwardFor hot rolling processes, show that the average strain rate can be given as: = (1+5)√RdIn(+1)arrow_forward
- : +0 usão العنوان on to A vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2R. Take: -9.81 mis ۲/۱ ostrararrow_forward: +0 العنوان use only In conventional drawing of a stainless steel wire, the original diameter D.-3mm, the area reduction at each die stand r-40%, and the proposed final diameter D.-0.5mm, how many die stands are required to complete this process. онarrow_forwardIn non-continuous dieless drawing process for copper tube as shown in Fig. (1), take the following data: Do-20mm, to=3mm, D=12mm, ti/to=0.6 and vo-15mm/s. Calculate: (1) area reduction RA, (2) drawing velocity v. Knowing that: t₁: final thickness D₁ V. Fig. (1) Darrow_forward
- A vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2Rb. Take: 8-9.81 m/sarrow_forwardIn conventional drawing of a stainless steel wire, the original diameter D.-3mm, the area reduction at each die stand r-40%, and the proposed final diameter D₁-0.5mm, how many die stands are required to complete this process.arrow_forwardA vertical true centrifugal casting process is used to produce bushings that are 250 mm long and 200 mm in outside diameter. If the rotational speed during solidification is 500 rev/min, determine the inside radii at the top and bottom of the bushing if R-2Rb. Take: 8-9.81 m/sarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY