Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 13.195RP
A 300-g block is released from rest after a spring of constant k = 600 N/m has been compressed 160 mm. Determine the force exerted by the loop ABCD on the block as the block passes through (a) point A, (b) point B, (c) point C. Assume no friction.
Fig. P13.195
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which of the following gives the closest value of the magnitude of the horizontal impulse at the support at point A in N-s?
0.1350
0.1180
2.25
1.125
Activity 3. A body that weighs W Newtons falls from rest from a height of 600mm and strikes a spring whose scale is 7.00 N/mm. If the maximum compression of the spring is 150 mm, what is the value of W? Disregard the mass of the spring.
Problem 2: Consider the following system of two interconnected pendulums P₁ and P₂ with same mass m and
length 2α that are suspended with massless rods from O₁ and O₂ without friction as shown in Fig. 2. The spring
k is unstreched when the pendulums are at rest in vertical equilibrium. A horizontal force f(t) is applied on the
mass m of the pendulum P₁.
f(t)
P₁
a
a
m
a
a
P₂
Fig. 2: Interconnected pendulums
Assuming small angles write the linearized equations of motion of the two pendulums with respect to the angular
displacements of the pendulum P₁ and ₂ of the pendulum P₂
Chapter 13 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 13.1 - Block A is traveling with a speed v0 on a smooth...Ch. 13.1 - A 400-kg satellite is placed in a circular orbit...Ch. 13.1 - Prob. 13.2PCh. 13.1 - Prob. 13.3PCh. 13.1 - A 500-kg communications satellite is in a circular...Ch. 13.1 - Prob. 13.5PCh. 13.1 - 13.6 In an ore-mixing operation, a bucket full of...Ch. 13.1 - Prob. 13.7PCh. 13.1 - A 2000-kg automobile starts from rest at point A...Ch. 13.1 - Prob. 13.9P
Ch. 13.1 - A 1.4-kg model rocket is launched vertically from...Ch. 13.1 - Packages are thrown down an incline at A with a...Ch. 13.1 - Prob. 13.12PCh. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - Boxes are transported by a conveyor belt with a...Ch. 13.1 - A 1200-kg trailer is hitched to a 1400-kg car. The...Ch. 13.1 - Prob. 13.16PCh. 13.1 - Prob. 13.17PCh. 13.1 - The subway train shown is traveling at a speed of...Ch. 13.1 - Prob. 13.19PCh. 13.1 - The system shown is at rest when a constant 30-lb...Ch. 13.1 - Car B is towing car A at a constant speed of 10...Ch. 13.1 - Prob. 13.22PCh. 13.1 - Prob. 13.23PCh. 13.1 - Two blocks A and B, of mass 4 kg and 5 kg,...Ch. 13.1 - Prob. 13.25PCh. 13.1 - A 3-kg block rests on top of a 2-kg block...Ch. 13.1 - Solve Prob. 13.26, assuming that the 2-kg block is...Ch. 13.1 - Prob. 13.28PCh. 13.1 - A 7.5-lb collar is released from rest in the...Ch. 13.1 - A 10-kg block is attached to spring A and...Ch. 13.1 - A 5-kg collar A is at rest on top of, but not...Ch. 13.1 - Prob. 13.32PCh. 13.1 - Prob. 13.33PCh. 13.1 - Two types of energy-absorbing fenders designed to...Ch. 13.1 - Prob. 13.35PCh. 13.1 - Prob. 13.36PCh. 13.1 - Prob. 13.37PCh. 13.1 - Prob. 13.38PCh. 13.1 - Prob. 13.39PCh. 13.1 - The sphere at A is given a downward velocity v0...Ch. 13.1 - A bag is gently pushed off the top of a wall at A...Ch. 13.1 - A roller coaster starts from rest at A, rolls down...Ch. 13.1 - In Prob. 13.42, determine the range of values of h...Ch. 13.1 - A small block slides at a speed v on a horizontal...Ch. 13.1 - Prob. 13.45PCh. 13.1 - Prob. 13.46PCh. 13.1 - Prob. 13.47PCh. 13.1 - Prob. 13.48PCh. 13.1 - Prob. 13.49PCh. 13.1 - Prob. 13.50PCh. 13.1 - A 1400-kg automobile starts from rest and travels...Ch. 13.1 - Prob. 13.52PCh. 13.1 - Prob. 13.53PCh. 13.1 - The elevator E has a weight of 6600 lb when fully...Ch. 13.2 - Two small balls A and B with masses 2m and m,...Ch. 13.2 - Prob. 13.3CQCh. 13.2 - Prob. 13.55PCh. 13.2 - A loaded railroad car of mass m is rolling at a...Ch. 13.2 - A 750-g collar can slide along the horizontal rod...Ch. 13.2 - Prob. 13.58PCh. 13.2 - Prob. 13.59PCh. 13.2 - A 500-g collar can slide without friction on the...Ch. 13.2 - For the adapted shuffleboard device in Prob 13.28,...Ch. 13.2 - An elastic cable is to be designed for bungee...Ch. 13.2 - It is shown in mechanics of materials that the...Ch. 13.2 - Prob. 13.64PCh. 13.2 - A 500-g collar can slide without friction along...Ch. 13.2 - A thin circular rod is supported in a vertical...Ch. 13.2 - Prob. 13.67PCh. 13.2 - A spring is used to stop a 50-kg package that is...Ch. 13.2 - Prob. 13.69PCh. 13.2 - 13.70 A section of track for a roller coaster...Ch. 13.2 - 13.71 A section of track for a roller coaster...Ch. 13.2 - A 1-lb collar is attached to a spring and slides...Ch. 13.2 - A 10-lb collar is attached to a spring and slides...Ch. 13.2 - Prob. 13.74PCh. 13.2 - Prob. 13.75PCh. 13.2 - A small package of weight W is projected into a...Ch. 13.2 - Prob. 13.77PCh. 13.2 - Prob. 13.78PCh. 13.2 - Prove that a force F(x, y, z) is conservative if,...Ch. 13.2 - The force F = (yzi + zxj + xyk)/xyz acts on the...Ch. 13.2 - Prob. 13.81PCh. 13.2 - Prob. 13.82PCh. 13.2 - Prob. 13.83PCh. 13.2 - Prob. 13.84PCh. 13.2 - Prob. 13.85PCh. 13.2 - A satellite describes an elliptic orbit of minimum...Ch. 13.2 - While describing a circular orbit 200 mi above the...Ch. 13.2 - How much energy per pound should be imparted to a...Ch. 13.2 - Knowing that the velocity of an experimental space...Ch. 13.2 - Prob. 13.90PCh. 13.2 - Prob. 13.91PCh. 13.2 - (a) Show that, by setting r = R + y in the...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - Collar A has a mass of 3 kg and is attached to a...Ch. 13.2 - A governor is designed so that the valve of...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - A 1.5-lb ball that can slide on a horizontal...Ch. 13.2 - Using the principles of conservation of energy and...Ch. 13.2 - Prob. 13.99PCh. 13.2 - A spacecraft is describing an elliptic orbit of...Ch. 13.2 - While describing a circular orbit, 185 mi above...Ch. 13.2 - Prob. 13.102PCh. 13.2 - Prob. 13.103PCh. 13.2 - Prob. 13.104PCh. 13.2 - Prob. 13.105PCh. 13.2 - Prob. 13.106PCh. 13.2 - Prob. 13.107PCh. 13.2 - Prob. 13.108PCh. 13.2 - Prob. 13.109PCh. 13.2 - A space vehicle is in a circular orbit at an...Ch. 13.2 - Prob. 13.111PCh. 13.2 - Show that the values vA and vP of the speed of an...Ch. 13.2 - Show that the total energy E of an earth satellite...Ch. 13.2 - A space probe describes a circular orbit of radius...Ch. 13.2 - Prob. 13.115PCh. 13.2 - A spacecraft of mass m describes a circular orbit...Ch. 13.2 - Using the answers obtained in Prob. 13.108, show...Ch. 13.2 - Prob. 13.118PCh. 13.3 - A large insect impacts the front windshield of a...Ch. 13.3 - The expected damages associated with two types of...Ch. 13.3 - Prob. 13.1IMDCh. 13.3 - Prob. 13.2IMDCh. 13.3 - Prob. 13.3IMDCh. 13.3 - Prob. 13.4IMDCh. 13.3 - Prob. 13.5IMDCh. 13.3 - A 35 000-Mg ocean liner has an initial velocity of...Ch. 13.3 - A 2500-lb automobile is moving at a speed of 60...Ch. 13.3 - Prob. 13.121PCh. 13.3 - A truck is hauling a 300-kg log out of a ditch...Ch. 13.3 - The coefficients of friction between the load and...Ch. 13.3 - Steep safety ramps are built beside mountain...Ch. 13.3 - Prob. 13.125PCh. 13.3 - The 18 000-kg F-35B uses thrust vectoring to allow...Ch. 13.3 - Prob. 13.127PCh. 13.3 - Prob. 13.128PCh. 13.3 - Prob. 13.129PCh. 13.3 - Prob. 13.130PCh. 13.3 - A tractor-trailer rig with a 2000-kg tractor, a...Ch. 13.3 - Prob. 13.132PCh. 13.3 - An 8-kg cylinder C rests on a 4-kg platform A...Ch. 13.3 - An estimate of the expected load on...Ch. 13.3 - A 60-g model rocket is fired vertically. The...Ch. 13.3 - Prob. 13.136PCh. 13.3 - A crash test is performed between an SUV A and a...Ch. 13.3 - Prob. 13.138PCh. 13.3 - Prob. 13.139PCh. 13.3 - Prob. 13.140PCh. 13.3 - The triple jump is a track-and-field event in...Ch. 13.3 - The last segment of the triple jump...Ch. 13.3 - The design for a new cementless hip implant is to...Ch. 13.3 - A 28-g steel-jacketed bullet is fired with a...Ch. 13.3 - 13.145 A 25-ton railroad car moving at 2.5 mi/h is...Ch. 13.3 - At an intersection, car B was traveling south and...Ch. 13.3 - The 650-kg hammer of a drop-hammer pile driver...Ch. 13.3 - Prob. 13.148PCh. 13.3 - Bullet B weighs 0.5 oz and blocks A and C both...Ch. 13.3 - A 180-lb man and a 120-lb woman stand at opposite...Ch. 13.3 - A 75-g ball is projected from a height of 1.6 m...Ch. 13.3 - A ballistic pendulum is used to measure the speed...Ch. 13.3 - Prob. 13.153PCh. 13.3 - Prob. 13.154PCh. 13.4 - A 5-kg ball A strikes a 1-kg ball B that is...Ch. 13.4 - A sphere with a speed v0 rebounds after striking a...Ch. 13.4 - Prob. 13.7IMDCh. 13.4 - Prob. 13.8IMDCh. 13.4 - A 10-kg ball A moving horizontally at 12 m/s...Ch. 13.4 - Prob. 13.10IMDCh. 13.4 - Prob. 13.155PCh. 13.4 - Prob. 13.156PCh. 13.4 - Prob. 13.157PCh. 13.4 - Prob. 13.158PCh. 13.4 - To apply shock loading to an artillery shell, a...Ch. 13.4 - Packages in an automobile parts supply house are...Ch. 13.4 - Prob. 13.161PCh. 13.4 - At an amusement park, there are 200-kg bumper cars...Ch. 13.4 - At an amusement park there are 200-kg bumper cars...Ch. 13.4 - Prob. 13.164PCh. 13.4 - 13.165 Two identical pool balls with a 2.37-in....Ch. 13.4 - A 600-g ball A is moving with a velocity of...Ch. 13.4 - Two identical hockey pucks are moving on a hockey...Ch. 13.4 - Prob. 13.168PCh. 13.4 - Prob. 13.169PCh. 13.4 - Prob. 13.170PCh. 13.4 - A girl throws a ball at an inclined wall from a...Ch. 13.4 - Prob. 13.172PCh. 13.4 - From experimental tests, smaller boulders tend to...Ch. 13.4 - Prob. 13.174PCh. 13.4 - A 1-kg block B is moving with a velocity v0 of...Ch. 13.4 - A 0.25-lb ball thrown with a horizontal velocity...Ch. 13.4 - After having been pushed by an airline employee,...Ch. 13.4 - Prob. 13.178PCh. 13.4 - A 5-kg sphere is dropped from a height of y = 2 m...Ch. 13.4 - A 5-kg sphere is dropped from a height of y = 3 m...Ch. 13.4 - Prob. 13.181PCh. 13.4 - Block A is released from rest and slides down the...Ch. 13.4 - Prob. 13.183PCh. 13.4 - A test machine that kicks soccer balls has a 5-lb...Ch. 13.4 - Ball B is hanging from an inextensible cord. An...Ch. 13.4 - A 70-g ball B dropped from a height h0 = 1.5 m...Ch. 13.4 - A 2-kg sphere moving to the right with a velocity...Ch. 13.4 - When the rope is at an angle of = 30, the 1-lb...Ch. 13.4 - When the rope is at an angle of = 30, the 1-kg...Ch. 13 - Prob. 13.190RPCh. 13 - Prob. 13.191RPCh. 13 - Prob. 13.192RPCh. 13 - Prob. 13.193RPCh. 13 - 13.194 A 50-lb sphere A with a radius of 4.5 in....Ch. 13 - A 300-g block is released from rest after a spring...Ch. 13 - A kicking-simulation attachment goes on the front...Ch. 13 - Prob. 13.197RPCh. 13 - Prob. 13.198RPCh. 13 - A 2-kg ball B is traveling horizontally at 10 m/s...Ch. 13 - A 2-kg block A is pushed up against a spring...Ch. 13 - The 2-lb ball at A is suspended by an inextensible...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A block A of 60.0 lb is connected to a block B of 10.0 lb by means of a rope and an ideal pulley. The system is released from rest. Between block A and the surface, there is a coefficient of kinetic friction of 0.10. Block A has descended 5.00 ft. At this moment, determine: a. The displacement of block B.b. The magnitude of the tension in the rope.c. The speed of block B.d. The speed of block A.arrow_forwardalso determine the force exerted by loop ABCD on the block at point C is _____ N.arrow_forwardA belt of negligible mass passes between cylinders A and B and is pulled to the right with a force P. Cylinders A and B weigh, respectively, 5 and 20 lb. The shaft of cylinder A is free to slide in a vertical slot and the coefficients of friction between the belt and each of the cylinders are µs = 0.50 and µk = 0.40. For P = 3.6 lb, determine (a) whether slipping occurs between the belt and either cylinder, (b) the angular acceleration of each cylinder.arrow_forward
- The contraption shown below consists of two masses connected by a string of negligible mass through a massless pulley. A spring with constant k is placed so that its equilibrium position is located a distance h below the bottom of mass m2. There is no friction either in the pulley or between the surfaces of the masses and the platform. When the two masses m¡ and m2 are released from rest, mass m2 begins falling and pulls mass m¡ up the ramp. a) Find an expression for the maximum compression of the spring d caused by mass m2 when it hits the spring. Your answer should be in terms of the m2 variables given (and g). b) On the axes below, make sketches of the kinetic energy (K), gravitational potential energy (Ugav), and elastic potential energy (Ua) of the system as a function of the height of m2, where y = 0 is defined as the point where mass m2 collides with the spring. Note that the left- hand edge of the axis is the height h, and the right-hand edge of the axis is the height -d. -d…arrow_forward1arrow_forwardQ.1. A block of mass m = 0.5 kg is pushed against a horizontal spring of spring constant k = 450 N/m and negligible mass. The spring is compressed a distance x from equilibrium, and then released from rest. The block travels along a frictionless horizontal surface and reaches point B with a speed vg = 12 m/s. Take g = 10 m/s2. The compression of the spring is: a. x = 0.16 m b. x = 0.467 m c. x = 0.533 m B. d. x = 0.4 marrow_forward
- 12.92 Two 2.6-lb collars A and B can slide without friction on a frame, con- sisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about CD. The two collars are connected by a cord running over a pulley that is attached to the frame at O, and a stop prevents collar B from moving. The frame is rotating at the rate 0 = 12 rad/s and r = 0.6 ft when the stop is removed, allowing collar A to move out along rod OE. Neglecting friction and the mass of the frame, deter- mine, for the position r = 1.2 ft, (a) the transverse component of the velocity of collar A, (b) the tension in the cord and the acceleration of collar A relative to the rod OE. D B Fig. P12.92 A Earrow_forwardKnowing that the coefficient of static friction between the tires and the road is 0.80 for the car as shown in figure 2. At this car, suddenly brakes are applied when it was moving with velocity of 360 inch/sec and it skidded to rest in 240 inch. Determine the magnitude of the normal reaction and of the friction force in the terms of W(weight) at each wheel as the car skidded to rest. { Use m=w/g, for the mass of the car if required, where g=386.09inch/s2.}arrow_forwardTwo 2.6-lb collars A and B can slide without friction on a frame, consisting of the horizontal rod OE and the vertical rod CD, which is free to rotate about CD . The two collars are connected by a cord running over a pulley that is attached to the frame at O and a stop prevents collar B from moving. The frame is rotating at the rate 0 =12 rad/s and r= 0.6 ft when the stop is removed allowing collar A to move out along rod OE . Neglecting friction and the mass of the frame, determine, for the position r= 1.2 ft, (a) the transverse component of the velocity of collar A, (b) the tension in the cord and the acceleration of collar A relative to the rod OE.arrow_forward
- In the system shown, a 150 N collar-pulley assembly slides on a horizontal shaft with coefficient of kinetic friction uk =0.10 between the collar and the shaft, and is acted upon by a force P with a magnitude of P = 250N at an angle 0 = 30 as shown. Knowing that the assembly is initially at rest, what is the time when the velocity of collar B reaches to 3 m/s? Also, at this instant, find the tensile force in the cord and the velocity of block A.arrow_forwardA 10-lb bock is resting on an inclined surface at an angle of 30°, as shown. The block is in contact with a compressed spring that has a modulus of 75lb/in. The spring has an initial compression of 6 inches that is released by cutting the restraining cords. If the coefficient of kinetic friction between the inclined surface and the block is 0.15, determine the speed of the block as it leaves the spring. Position B L. Position A Position C 6 in, Restraining cords ww. H = 0.15 k = 75 lb/in 30°arrow_forward! Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Two uniform cylinders, each of mass m = 7.5 kg and radius r= 125 mm, are connected by a belt as shown. The system is released from rest when t = 0. B Determine the tension in the portion of belt connecting the two cylinders. The tension in the portion of belt connecting the two cylinders is P=[ N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY