Concept explainers
(a)
The relationship between brain weight y and age t is linear.
(a)

Answer to Problem 98E
The linear equation is
Explanation of Solution
Given information:
The average weight of male child’s brain is 970grams at age 1 and 1270 grams at age 3.
Formula used:
Calculation:
Let y represents the average weight of a male child’s brain at age
The slope of line is
Using the point slope form the equation is
Therefore the linear equation is
Conclusion:
The linear equation is
(b)
The slope and explain about the brain weight.
(b)

Answer to Problem 98E
The slope is positive represents one unit change in the age of the child’s brain weight.
Explanation of Solution
Given information:
The average weight of male child’s brain is 970grams at age 1 and 1270 grams at age 3.
Formula used:
Calculation:
The slope of linear equation is 150. Since the slope is positive, it represents that for one unit change in age the child’s brain weight increased by 150 gm.
Conclusion:
The slope is positive represents one unit change in the age of the child’s brain weight.
(c)
The model to estimate the average brain at age 2.
(c)

Answer to Problem 98E
The average brain weight at age 2 is 1120
Explanation of Solution
Given information:
The average weight of male child’s brain is 970grams at age 1 and 1270 grams at age 3.
Formula used:
Calculation:
To find the average brain weight at age 2, substitute
Therefore the average brain weight at age 2 is 1120.
Conclusion:
The average brain weight at age 2 is 1120
(d)
The actual average brain weight at the age 2.
(d)

Answer to Problem 98E
The actual and estimated weight is same
Explanation of Solution
Given information:
The average weight of male child’s brain is 970grams at age 1 and 1270 grams at age 3.
Calculation:
Using library, internet and some other sources we found that the average brain weight of a male child is 1120 grams.
The actual and estimated weight is same.
Conclusion:
The actual and estimated weight is same
(e)
The average brain weight of an adult.
(e)

Answer to Problem 98E
The average brain weight of an adult is
Explanation of Solution
Given information:
The average weight of male child’s brain is 970grams at age 1 and 1270 grams at age 3.
Formula used:
Calculation:
The model
Adult
The average brain weight of an adult is
Conclusion:
The average brain weight of an adult is
Chapter 1 Solutions
EBK PRECALCULUS W/LIMITS
- Consider the region below f(x) = (11-x), above the x-axis, and between x = 0 and x = 11. Let x; be the midpoint of the ith subinterval. Complete parts a. and b. below. a. Approximate the area of the region using eleven rectangles. Use the midpoints of each subinterval for the heights of the rectangles. The area is approximately square units. (Type an integer or decimal.)arrow_forwardRama/Shutterstock.com Romaset/Shutterstock.com The power station has three different hydroelectric turbines, each with a known (and unique) power function that gives the amount of electric power generated as a function of the water flow arriving at the turbine. The incoming water can be apportioned in different volumes to each turbine, so the goal of this project is to determine how to distribute water among the turbines to give the maximum total energy production for any rate of flow. Using experimental evidence and Bernoulli's equation, the following quadratic models were determined for the power output of each turbine, along with the allowable flows of operation: 6 KW₁ = (-18.89 +0.1277Q1-4.08.10 Q) (170 - 1.6 · 10¯*Q) KW2 = (-24.51 +0.1358Q2-4.69-10 Q¹²) (170 — 1.6 · 10¯*Q) KW3 = (-27.02 +0.1380Q3 -3.84-10-5Q) (170 - 1.6-10-ºQ) where 250 Q1 <1110, 250 Q2 <1110, 250 <3 < 1225 Qi = flow through turbine i in cubic feet per second KW = power generated by turbine i in kilowattsarrow_forwardHello! Please solve this practice problem step by step thanks!arrow_forward
- Hello, I would like step by step solution on this practive problem please and thanks!arrow_forwardHello! Please Solve this Practice Problem Step by Step thanks!arrow_forwarduestion 10 of 12 A Your answer is incorrect. L 0/1 E This problem concerns hybrid cars such as the Toyota Prius that are powered by a gas-engine, electric-motor combination, but can also function in Electric-Vehicle (EV) only mode. The figure below shows the velocity, v, of a 2010 Prius Plug-in Hybrid Prototype operating in normal hybrid mode and EV-only mode, respectively, while accelerating from a stoplight. 1 80 (mph) Normal hybrid- 40 EV-only t (sec) 5 15 25 Assume two identical cars, one running in normal hybrid mode and one running in EV-only mode, accelerate together in a straight path from a stoplight. Approximately how far apart are the cars after 15 seconds? Round your answer to the nearest integer. The cars are 1 feet apart after 15 seconds. Q Search M 34 mlp CHarrow_forward
- Find the volume of the region under the surface z = xy² and above the area bounded by x = y² and x-2y= 8. Round your answer to four decimal places.arrow_forwardУ Suppose that f(x, y) = · at which {(x, y) | 0≤ x ≤ 2,-x≤ y ≤√x}. 1+x D Q Then the double integral of f(x, y) over D is || | f(x, y)dxdy = | Round your answer to four decimal places.arrow_forwardD The region D above can be describe in two ways. 1. If we visualize the region having "top" and "bottom" boundaries, express each as functions of and provide the interval of x-values that covers the entire region. "top" boundary 92(x) = | "bottom" boundary 91(x) = interval of values that covers the region = 2. If we visualize the region having "right" and "left" boundaries, express each as functions of y and provide the interval of y-values that covers the entire region. "right" boundary f2(y) = | "left" boundary fi(y) =| interval of y values that covers the region =arrow_forward
- Find the volume of the region under the surface z = corners (0,0,0), (2,0,0) and (0,5, 0). Round your answer to one decimal place. 5x5 and above the triangle in the xy-plane witharrow_forwardGiven y = 4x and y = x² +3, describe the region for Type I and Type II. Type I 8. y + 2 -24 -1 1 2 2.5 X Type II N 1.5- x 1- 0.5 -0.5 -1 1 m y -2> 3 10arrow_forwardGiven D = {(x, y) | O≤x≤2, ½ ≤y≤1 } and f(x, y) = xy then evaluate f(x, y)d using the Type II technique. 1.2 1.0 0.8 y 0.6 0.4 0.2 0- -0.2 0 0.5 1 1.5 2 X X This plot is an example of the function over region D. The region identified in your problem will be slightly different. y upper integration limit Integral Valuearrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





