Concept explainers
a.
Sketch the graph of each function.
a.

Answer to Problem 14PS
Explanation of Solution
Calculation:
The general rule of the function shifting vertically is as below,
h(x)=f(x)+c(upwards)h(x)=f(x)−c(downwards)
The general rule of the function shifting horizontally upwards is as below,
h(x)=f(x+c)(shift,left)h(x)=f(x−c)(shift,right)
Consider the following graph,
The above function looks like qudratic one end hence assume it as,
f(x)=ax2+bx+c
Observe the above function and following data is obtained,
f(0)=2,f(1)=0,f(−1)=0
Substitute each of the baove values on the general function as done below,
f(0)=a(0)2+b(0)+c2=c
Substitute this value in the general function f(x)=ax2+bx+c , hence it becomes,
f(x)=ax2+bx+c
Substitute f(1)=0 in the above equation,
f(1)=a(12)+b(1)+20=a+b+2......(1)a+b=−2
Solve (1) and (2), so that the values of constants are a=−2,b=0 hence the quadratic function becomes,
f(x)=−2x2+2
Hence, the function of the above graph is −2x2+2 .
Now consider the function f(x+1) , obtain the same by replacing x by (x+1) in the above function hence,
f(x+1)=−2(x+1)2+2=−2(x2+1+2x)+2=−2x2−2−4x+2=−2x2+4x
Sketch the above graph using maple software as done below,
b.
Sketch the graph of each function.
b.

Answer to Problem 14PS
Explanation of Solution
Calculation:
The general rule of the function shifting vertically is as below,
h(x)=f(x)+c(upwards)h(x)=f(x)−c(downwards)
The general rule of the function shifting horizontally upwards is as below,
h(x)=f(x+c)(shift,left)h(x)=f(x−c)(shift,right)
Consider the following graph,
The above function looks like qudratic one end hence assume it as,
f(x)=ax2+bx+c
Observe the above function and following data is obtained,
f(0)=2,f(1)=0,f(−1)=0
Substitute each of the baove values on the general function as done below,
f(0)=a(0)2+b(0)+c2=c
Substitute this value in the general function f(x)=ax2+bx+c , hence it becomes,
f(x)=ax2+bx+c
Substitute f(1)=0 in the above equation,
f(1)=a(1)2+b(1)+20=a+b+2......(1)a+b=−2
Solve (1) and (2), so that the values of constants are a=−2,b=0 hence the quadratic function becomes,
f(x)=−2x2+2
Hence, the function of the above graph is −2x2+2 .
Now consider the function f(x)+1 , obtain the same by adding just 1 in the above function hence,
f(x)+1=−2+2+1=−2x2+3
The graph will be shifted 1 unit upwards.
Sketch the above graph using maple software as done below,
c.
Sketch the graph of the function.
c.

Answer to Problem 14PS
Explanation of Solution
Calculation:
The general rule of the function shifting vertically is as below,
h(x)=f(x)+c(upwards)h(x)=f(x)−c(downwards)
The general rule of the function shifting horizontally upwards is as below,
h(x)=f(x+c)(shift,left)h(x)=f(x−c)(shift,right)
Consider the following graph,
The above function looks like qudratic one end hence assume it as,
f(x)=ax2+bx+c
Observe the above function and following data is obtained,
f(0)=2,f(1)=0,f(−1)=0
Substitute each of the baove values on the general function as done below,
f(0)=a(0)2+b(0)+c2=c
Substitute this value in the general function f(x)=ax2+bx+c , hence it becomes,
f(x)=ax2+bx+c
Substitute f(1)=0 in the above equation,
f(1)=a(1)2+b(1)+20=a+b+2......(1)a+b=−2
Solve (1) and (2), so that the values of constants are a=−2,b=0 hence the quadratic function becomes,
f(x)=−2x2+2
Hence, the function of the above graph is −2x2+2 .
Consider the function 2f(x) , this function is obtained magnifying the above graph by 2 ,
2f(x)=2(−2x2+2)=−4x2+4
The graph of 2f(x) will look like below,
d.
Sketch the graph of each function.
d.

Answer to Problem 14PS
Explanation of Solution
Calculation:
The general rule of the function shifting vertically is as below,
h(x)=f(x)+c(upwards)h(x)=f(x)−c(downwards)
The general rule of the function shifting horizontally upwards is as below,
h(x)=f(x+c)(shift,left)h(x)=f(x−c)(shift,right)
Consider the following graph,
The above function looks like qudratic one end hence assume it as,
f(x)=ax2+bx+c
Observe the above function and following data is obtained,
f(0)=2,f(1)=0,f(−1)=0
Substitute each of the baove values on the general function as done below,
f(0)=a(0)2+b(0)+c2=c
Substitute this value in the general function f(x)=ax2+bx+c , hence it becomes,
f(x)=ax2+bx+c
Substitute f(1)=0 in the above equation,
f(1)=a(1)2+b(1)+20=a+b+2......(1)a+b=−2
Solve (1) and (2), so that the values of constants are a=−2,b=0 hence the quadratic function becomes,
f(x)=−2x2+2
Hence, the function of the above graph is −2x2+2 .
Consider the function f(−x) , this function is obtained by replacing x by- x the above graph,
f(−x)=−2(−x2)+2=−2x2+2
The graph of f(−x) will exactly be same as f(x) hence it will look like,
e.
Plot the graph.
e.

Answer to Problem 14PS
Explanation of Solution
Calculation:
The general rule of the function shifting vertically is as below,
h(x)=f(x)+c(upwards)h(x)=f(x)−c(downwards)
The general rule of the function shifting horizontally upwards is as below,
h(x)=f(x+c)(shift,left)h(x)=f(x−c)(shift,right)
Consider the following graph,
The above function looks like qudratic one end hence assume it as,
f(x)=ax2+bx+c
Observe the above function and following data is obtained,
f(0)=2,f(1)=0,f(−1)=0
Substitute each of the baove values on the general function as done below,
f(0)=a(0)2+b(0)+c2=c
Substitute this value in the general function f(x)=ax2+bx+c , hence it becomes,
f(x)=ax2+bx+c
Substitute f(1)=0 in the above equation,
f(1)=a(1)2+b(1)+20=a+b+2......(1)a+b=−2
Solve (1) and (2), so that the values of constants are a=−2,b=0 hence the quadratic function becomes,
f(x)=−2x2+2
Hence, the function of the above graph is −2x2+2 .
Consider the function −f(x) , this function is obtained by inverting the above original graph,
−f(x)=−(−2x2+2)=2x2+2
The graph of −f(x) will exactly be same as −f(x) hence it will look like,
f.
Plot the graph.
f.

Answer to Problem 14PS
Explanation of Solution
Calculation:
The general rule of the function shifting vertically is as below,
h(x)=f(x)+c(upwards)h(x)=f(x)−c(downwards)
The general rule of the function shifting horizontally upwards is as below,
h(x)=f(x+c)(shift,left)h(x)=f(x−c)(shift,right)
Consider the following graph,
The above function looks like qudratic one end hence assume it as,
f(x)=ax2+bx+c
Observe the above function and following data is obtained,
f(0)=2,f(1)=0,f(−1)=0
Substitute each of the baove values on the general function as done below,
f(0)=a(0)2+b(0)+c2=c
Substitute this value in the general function f(x)=ax2+bx+c , hence it becomes,
f(x)=ax2+bx+c
Substitute f(1)=0 in the above equation,
f(1)=a(1)2+b(1)+20=a+b+2......(1)a+b=−2
Solve (1) and (2), so that the values of constants are a=−2,b=0 hence the quadratic function becomes,
f(x)=−2x2+2
Hence, the function of the above graph is −2x2+2 .
Consider the function |f(x)|=|−2x2+2| , all negative values will get reflected about x-axis and hence the function will look like below,
f.
Plot the graph.
f.

Answer to Problem 14PS
Explanation of Solution
Calculation:
The general rule of the function shifting vertically is as below,
h(x)=f(x)+c(upwards)h(x)=f(x)−c(downwards)
The general rule of the function shifting horizontally upwards is as below,
h(x)=f(x+c)(shift,left)h(x)=f(x−c)(shift,right)
Consider the following graph,
The above function looks like qudratic one end hence assume it as,
f(x)=ax2+bx+c
Observe the above function and following data is obtained,
f(0)=2,f(1)=0,f(−1)=0
Substitute each of the baove values on the general function as done below,
f(0)=a(0)2+b(0)+c2=c
Substitute this value in the general function f(x)=ax2+bx+c , hence it becomes,
f(x)=ax2+bx+c
Substitute f(1)=0 in the above equation,
f(1)=a(1)2+b(1)+20=a+b+2......(1)a+b=−2
Solve (1) and (2), so that the values of constants are a=−2,b=0 hence the quadratic function becomes,
f(x)=−2x2+2
Hence, the function of the above graph is −2x2+2 .
Consider the function f|(x)|=−2|x|2+2 , the absolute value of the function does not matter anything here as the value of x is already squared, hence the function will not have any change and it will look like below,
Chapter 1 Solutions
EBK PRECALCULUS W/LIMITS
- 2:21 MM -8 -7 -6 -5 -4 0 5 4 3 2 N -3 -4 +5 +6 5G 100% Identify the function whose graph appears above. f(x) = = tan X 3 ✓ Question Help: ☐ Video ☐ Message instructor Submit Question |||arrow_forward4 3. 2. 1 0 Π 元 -1 3 x -53. 5π 2π The graph of the function y = f(x) is shown in the xy-plane. Which of the following is the graph of the polar function r = f(e) in the polar coordinate system? A B Polar axis Polar axis Polar axis Polar axisarrow_forward٣:٥٣ النموذج الاول . . . O O O بشما ند الحمر الحمر الجمهورية الجنية وزارة التربية والتعليم اليوم التاريخ اللجنة العليا للاختبارات الزمن اختبار مادة الجبر والهندسة لجنة المطابع السرية المركزية للشهادة الثانوية العامة (القسم العلمي) الفترة %97 (1) ظلل في ورقة الإجابة الدائرة التي تحتوي على الحرف ( ص ) للإجابة الصحيحة والحرف ( خ ) للإجابة الخطأ بحسب رقم الفقرة لكل مما يأتي ( درجة لكل فقرة ) )1 ) 2 ) 3 ) 4 ) بؤرة القطع س" = ١٢ ص هي ( ۲ ) طول المحور الأصغر للقطع ٩ س + ص = ٩ يساوي 6 وحدات طول . ) إذا كان & عدد مركب ، 181 + 11 = ٦ ، فإن ١١ = ٣ . ) إذا كان م + ۳ ت = ۲ + ت ب م ، ب دع ، فإن م + ب = 5 ( ) إذا كان & = ۱ + ٣ ت ، فإن ٠ = ١٠ . 6 ( - ) إذا كان ٥٠ - ٣ - ١٢٠ ٤ - ٣ ، فإن قيمة ٧ = ٥ . 1 ) = N ) إذا كان ح هو الحد الخالي من س في المفكوك ( س + v. N 8 ( ( قيمة المقدار , = + ۱ ، * . . + ، فإن قيمة ٧ = ١٦ . ۱ + 9 ( ) المستقيمان المقاربان للقطع الذي معادلته س" = ١ هما ص = : ۹ 10 ( ) إذا كان ٥ + س = ٢٤ ، فإن قيمة س = - 1 س 11 ( ) إذا كانت النسبة بين الحدين الأوسطين تساوي 9 في المفكوك ( س + - ) ،…arrow_forward
- الاسم يمنع استخدام الآلة الحاسبة ظلل في ورقة الإجابة الدائرة التي تحتوي على الحرف (ص) للإجابة الصحيحة والحرف (خ) للإجابة الخطأ بحسب رقم الفقرة لكل مما يأتي: درجة لكل فقرة. ( ) نها جا 元 جتا = صفر س ۱ س س -۱ ( ) يمكن إعادة تعريف الدالة د(س) = س قاس لكي تكون متصلة عند س = 7 ( ) إذا كانت د(س) = (٢) س - س ) ؛ فإن د(١) = ٦ ٢ س ص ( ) إذا كانت س + 0= ؛ فإن عند ) - ١ ، - ٦ ) تساوي (٦) ( ) إذا كانت د(س) = س ه ، و (س) = ٣ س ٢ + ٢ س ؛ فإن ( د ) (۱) = ۸ ) ( معادلة ناظم الدالة ص = د(س) عند النقطة ) ( ، د (۲)) هي ص - (د (م) - - د (۲) ( س - م ) ( ) إذا كانت ص = ظتا٢ س ؛ فإن ص = ٢ ص قتا ٢س ) ( إذا كانت د(س) = س ؛ فإن د (T) = جتاس 1- T ( ) إذا كانت د(س) = 1 - جناس جاس ؛ فإن د () = - 1 ( ) إذا كانت الدالة د (س) تحقق شروط مبرهنة القيمة المتوسطة على [ ، ب ] ، فإنه يوجد جـ ] ، ب [ بحيث (جـ) = (P) + (~)- - ب + P 1 2 3 4 5 6 7 8 9 10 11 ( ) للدالة د(س) = لو ( س ) + (٣) نقطة حرجة عند س = . ( ) إذا كان س = - ٢ مقارباً رأسياً للدالة د(س) 12 10 13 14 15 16 17 س = لو|س | + ث - = ۲ س + ٣ ب س + ٤ ، فإن معادلة…arrow_forward2. Symmetry Evaluate the following integrals using symmetry argu- ments. Let R = {(x, y): -a ≤ x ≤ a, −b ≤ y ≤ b}, where a and b are positive real numbers. a. SS Sf xye xye¯(x² + y²) dA R b. C sin (x − y) - dA x² + y² + 1 Rarrow_forwardChoose a convenient order When converted to an iterated integral, the following double integrals are easier to evaluate in one order please show all stepsarrow_forward
- The graph of f' is below. Use it to determine where the local minima and maxima for f are. If there are multiple answers, separate with commas. 2 f'(x) N -5 -4 3-2-1 -1 -2 -3 -4 12 3 4 5 -x Local minima at x Local maxima at xarrow_forwardThe graph of f' is below. Use it to determine the intervals where f is increasing. -5-4-32 4- 3 2 1 -2 -3 +x 2 3 4 5arrow_forwardThe graph of f' is below. Use it to determine where the inflection points are and the intervals where f is concave up and concave down. If there are multiple inflection points, separate with a comma. 6 5 4 3 2 1 f'(x) +x -6-5-4-3 -2 -1 1 2 3 4 5 6 -1 -2 -3 -4 -5 -6+ Inflection point(s) at x = Concave up: Concave down:arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





