Concept explainers
Interpretation: The bond strength of NOneeds to be determined, with the help of standard enthalpy of formation of NO that is 90 kJ/mol and bond energy values of
Concept Introduction:
A chemical compound can be formed by either ionic bond or covalent bond between bonded atoms. The ionic compound is formed by opposite charge ions; cations and anions. The covalent compound is formed by sharing of electrons between bonded atoms.
The bond energy of a chemical bond can be defined as the energy required to break that chemical bond. The bond energy that is needed to break the bonds in reactant molecule and the energy released to form
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
EBK CHEMICAL PRINCIPLES
- Bond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardThe standard enthalpy of formation for NO(g) is 90. kJ/mol. Use this and the values for the O 9 O and N N bond energies to estimate the bond strength in NO.arrow_forwardUsing the bond dissociation enthalpies in Table 8.8, estimate the enthalpy of combustion of gaseous methane, CH4, to give water vapor and carbon dioxide gas.arrow_forward
- Estimate H for the following reactions using bond energies given in Table 8.5. 3CH2=CH2(g) + 3H2(g) 3CH2CH3(g) The enthalpies of formation for C6H6(g) and C6H12 (g) are 82.9 and 90.3 kJ/mol. respectively. Calculate H for the two reactions using standard enthalpies of formation from Appendix 4. Account for any differences between the results obtained from the two methods.arrow_forwardWrite all resonance structures of chlorobenzene, C6H5Cl, a molecule with the same cyclic structure as benzene. In all structures, keep the CCl bond as a single bond. Which resonance structures are the most important?arrow_forwardUsing the standard enthalpy of formation data in Appendix G, show how the standard enthalpy of formation of HCl(g) can be used to determine the bond energy.arrow_forward
- Nitrosyl azide, N4O, is a pale yellow solid first synthesized in 1993. Write the Lewis structure for nitrosyl azide.arrow_forwardThe standard enthalpy of formation of XeF4 is 218 kJ/mol. Use this value and the enthalpy of dissociation of the FF bond to calculate the XeF bond dissociation enthalpy.arrow_forwardExplain the decomposition of nitroglycerin in terms of relative bond enthalpies.arrow_forward
- A commercial process for preparing ethanol (ethyl alcohol), C2H5OH, consists of passing ethylene gas. C2H4, and steam over an acid catalyst (to speed up the reaction). The gas-phase reaction is Use bond enthalpies (Table 9.5) to estimate the enthalpy change for this reaction when 37.0 g of ethyl alcohol is produced.arrow_forwardThe conversion of graphite into diamond is an endothermic reaction (AH = +3 kJ mol-1). C(graphite) → C(diamond) 1 The enthalpy change of atomisation of diamond is smaller than that of graphite. The bond energy of the C-C bonds in graphite is greater than that in diamond. 2 The enthalpy change of combustion of diamond is greater than that of graphite. 3 Which statements are correct? A 1, 2 and 3 B 1 and 2 only C 2 and 3 only D 1 onlyarrow_forwardCalculate the lattice energy of magnesium sulfide from the data given below. Mg(s) → Mg(g) ΔH° = 148 kJ/mol Mg(g) → Mg2+(g) + 2e– ΔH° = 2186 kJ/mol S8(s) → 8S(g) ΔH° = 2232 kJ/mol S(g) + 2e- → S2-(g) ΔH° = 450 kJ/mol 8Mg(s) + S8(s) → 8MgS(s) ΔH° = –2744 kJ/mol MgS(s) → Mg2+(g) + S2-(g) ΔH°lattice = ?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax