EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 9781305856745
Author: DECOSTE
Publisher: CENGAGE LEARNING - CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 28E
Interpretation Introduction
Interpretation: The given ions need to be matched with the size of the atoms given.
Concept Introduction: Electronegativity is defined as the ability of an atom to attract a shared pair of electron towards itself. Electronegativity varies with size of the atom. As the size of an atom decreases, its outermost shell becomes closer to the nucleus and its tendency to attract electrons increases. Also, the size of the atom decreases as positive charge on it increases.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the data provided below to calculate the lattice energy of RbCl. Is this value greater or less than thelattice energy of NaCl? Explain.Electron affinity of Cl = –349 kJ/mol1st ionization energy of Rb = 403 kJ/molBond energy of Cl2 = 242 kJ/molSublimation energy of Rb = 86.5 kJ/molΔHf [RbCl (s)] = –430.5 kJ/mol
Which ionic compounds would have the greatestlattice energy: NaCl, KCl, or MgC l 2 ? Explain youranswer.
Rank the following five ions in order of decreasing radius. Use the periodic table as necessary.
Rank from largest to smallest radius. To rank items as equivalent, overlap them.
F−
Cl−
Br−
I−
At−
Chapter 13 Solutions
EBK CHEMICAL PRINCIPLES
Ch. 13 - Explain the electronegativity trends across a row...Ch. 13 - Prob. 2DQCh. 13 - Prob. 3DQCh. 13 - Prob. 4DQCh. 13 - Prob. 5DQCh. 13 - Prob. 6DQCh. 13 - Prob. 7DQCh. 13 - Prob. 8DQCh. 13 - Prob. 9DQCh. 13 - Arrange the following molecules from most to least...
Ch. 13 - Prob. 11DQCh. 13 - Prob. 12DQCh. 13 - Prob. 13ECh. 13 - Prob. 14ECh. 13 - An alternative definition of electronegativity...Ch. 13 - Prob. 16ECh. 13 - Without using Fig. 13.3, predict the order of...Ch. 13 - Without using Fig. 13.3, predict which bond in...Ch. 13 - Prob. 19ECh. 13 - Prob. 20ECh. 13 - Indicate the bond polarity (show the partial...Ch. 13 - Prob. 22ECh. 13 - Prob. 23ECh. 13 - Prob. 24ECh. 13 - Prob. 25ECh. 13 - Prob. 26ECh. 13 - Prob. 27ECh. 13 - Prob. 28ECh. 13 - Prob. 29ECh. 13 - Prob. 30ECh. 13 - Prob. 31ECh. 13 - Give an example of an ionic compound where both...Ch. 13 - What noble gas has the same electron configuration...Ch. 13 - Which of the following ions have noble gas...Ch. 13 - Give three ions that are isoelectronic with...Ch. 13 - Prob. 36ECh. 13 - Predict the empirical formulas of the ionic...Ch. 13 - Which compound in each of the following pairs of...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Consider the following:...Ch. 13 - In general, the higher the charge on the ions in...Ch. 13 - Consider the following energy changes: a....Ch. 13 - Prob. 44ECh. 13 - Prob. 45ECh. 13 - The lattice energies of FeCl3,FeCl2,andFe2O3 are...Ch. 13 - Prob. 47ECh. 13 - Prob. 48ECh. 13 - Prob. 49ECh. 13 - Prob. 50ECh. 13 - Prob. 51ECh. 13 - Prob. 52ECh. 13 - Prob. 53ECh. 13 - Prob. 54ECh. 13 - Prob. 55ECh. 13 - Prob. 56ECh. 13 - Prob. 57ECh. 13 - Prob. 58ECh. 13 - Prob. 59ECh. 13 - Prob. 60ECh. 13 - Prob. 61ECh. 13 - Prob. 62ECh. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Prob. 65ECh. 13 - Prob. 66ECh. 13 - Prob. 67ECh. 13 - Prob. 68ECh. 13 - Prob. 69ECh. 13 - Prob. 70ECh. 13 - Prob. 71ECh. 13 - Prob. 72ECh. 13 - Prob. 73ECh. 13 - Prob. 74ECh. 13 - Prob. 75ECh. 13 - Prob. 76ECh. 13 - Prob. 77ECh. 13 - Prob. 78ECh. 13 - Prob. 79ECh. 13 - Prob. 80ECh. 13 - Prob. 81ECh. 13 - Prob. 82ECh. 13 - Prob. 83ECh. 13 - Prob. 84ECh. 13 - Prob. 85ECh. 13 - Prob. 86ECh. 13 - Prob. 87ECh. 13 - Prob. 88ECh. 13 - Prob. 89ECh. 13 - Prob. 90ECh. 13 - Prob. 91ECh. 13 - Prob. 92ECh. 13 - Prob. 93ECh. 13 - Prob. 94ECh. 13 - Prob. 95ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Prob. 97ECh. 13 - Two variations of the octahedral geometry are...Ch. 13 - Prob. 99ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Which of the molecules in Exercise 96 have net...Ch. 13 - Prob. 102ECh. 13 - Give two requirements that should be satisfied for...Ch. 13 - What do each of the following sets of...Ch. 13 - Prob. 105ECh. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Prob. 108ECh. 13 - Prob. 109ECh. 13 - Which of the following molecules have net dipole...Ch. 13 - Prob. 111AECh. 13 - Prob. 112AECh. 13 - Prob. 113AECh. 13 - Prob. 114AECh. 13 - Prob. 115AECh. 13 - There are two possible structures of XeF2Cl2 ,...Ch. 13 - Prob. 117AECh. 13 - Prob. 118AECh. 13 - Prob. 119AECh. 13 - Prob. 120AECh. 13 - Prob. 121AECh. 13 - Prob. 122AECh. 13 - Prob. 123AECh. 13 - Prob. 124AECh. 13 - Prob. 125AECh. 13 - Prob. 126AECh. 13 - Prob. 127AECh. 13 - Prob. 128AECh. 13 - Prob. 129AECh. 13 - Prob. 130AECh. 13 - Prob. 131AECh. 13 - Prob. 132AECh. 13 - Prob. 133CPCh. 13 - Prob. 134CPCh. 13 - Given the following information: Heat of...Ch. 13 - Prob. 136CPCh. 13 - A promising new material with great potential as...Ch. 13 - Think of forming an ionic compound as three steps...Ch. 13 - Prob. 139CPCh. 13 - Prob. 140CPCh. 13 - Calculate the standard heat of formation of the...Ch. 13 - Prob. 142CPCh. 13 - Prob. 143MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider an ionic compound, MXMX, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MXMX is Δ?∘f=−411ΔHf∘=−411 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=101ΔHsub=101 kJ/mol. The ionization energy of MM is IE=461IE=461 kJ/mol. The electron affinity of XX is Δ?EA=−325ΔHEA=−325 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=189BE=189 kJ/mol. Determine the lattice energy of MXMX.arrow_forwardSome of the batteries currently used in your smartphone contain lithium ions (Li +) as their electricity conductors. Currently, researchers are also developing batteries that use sodium ions (Na +) as a substitute for lithium ions due to their abundance in nature. Of course, lithium (Li) and sodium (Na) atoms have different properties due to their different electronic structures. Compare the radius sizes of the following atoms and ions: -Li and Na -ion Li + and Li -ion Li + and Na + ions. 2. How does the first ionization energy change from lithium to sodium? Is it getting bigger or smaller? Explain why.arrow_forwardConsider an ionic compound, MXMX, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MXMX is Δ?∘f=−553ΔHf∘=−553 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=129ΔHsub=129 kJ/mol. The ionization energy of MM is IE=491IE=491 kJ/mol. The electron affinity of XX is Δ?EA=−325ΔHEA=−325 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=219BE=219 kJ/mol. Determine the lattice energy of MXMX. Δ?lattice=ΔHlattice= kJ/molarrow_forward
- Consider an ionic compound, MXMX, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MXMX is Δ?∘f=−553ΔHf∘=−553 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=105ΔHsub=105 kJ/mol. The ionization energy of MM is IE=483IE=483 kJ/mol. The electron affinity of XX is Δ?EA=−307ΔHEA=−307 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=213BE=213 kJ/mol. Determine the lattice energy of MXMX. Δ?lattice=ΔHlattice= kJ/molarrow_forwardRank the size of the following atoms and ions –C, C-. F-, Na+, Rb+arrow_forwardConsider an ionic compound, MX3, composed of generic metal M and generic gaseous halogen X. The enthalpy of formation of MX3 is ΔHf∘=−965 kJ/mol. The enthalpy of sublimation of M is ΔHsub=123 kJ/mol. The first, second, and third ionization energies of M are IE1=557 kJ?mol, IE2=1751 kJ/mol, and IE3=2731 kJ/mol. The electron affinity of X is ΔHEA=−339 kJ/mol The bond energy of X2 is BE=235 kJ/mol. Determine the lattice energy of MX3.arrow_forward
- Consider an ionic compound, MX2MX2, composed of generic metal MM and generic, gaseous halogen XX. The enthalpy of formation of MX2MX2 is Δ?∘f=−923ΔHf∘=−923 kJ/mol. The enthalpy of sublimation of MM is Δ?sub=131ΔHsub=131 kJ/mol. The first and second ionization energies of MM are IE1=755IE1=755 kJ/mol and IE2=1364IE2=1364 kJ/mol. The electron affinity of XX is Δ?EA=−329ΔHEA=−329 kJ/mol. (Refer to the hint). The bond energy of X2X2 is BE=153BE=153 kJ/mol. Determine the lattice energy of MX2MX2. Δ?lattice=ΔHlattice= kJ/molarrow_forwardHow many valence electrons are in I? 1 X Sarrow_forwardWhich of the following atoms and ions is largest: S2 - , S, O2 - ?arrow_forward
- The work function (Φ) of a metal is the minimum energy needed to remove an electron from its surface. (a) Is it easier toremove an electron from a gaseous silver atom or from the sur-face of solid silver (Φ=7.59X10⁻¹⁹J; IE =731 kJ/mol)? (b) Explain the results in terms of the electron-sea model ofmetallic bondingarrow_forwardGive three examples of ions that have an electron configurationof nd6 1n = 3, 4, 5,c2.arrow_forwardCompared to their neutral atom counterparts, ions will have smaller or larger atomic radii due to their losing or gaining electrons. According to Jensen (2010), Linus Pauling assigned the radius of the oxygen anion (O“) at 140 pm (larger than the neutral atom, 66 pm). On the other hand, the magnesium atom loses 95 ppm from its 160 ppm radius when it loses two valence electrons, forming the magnesium ion. If these two ions are at equilibrium separation distance, find the value of r in pm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY