EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 9781305856745
Author: DECOSTE
Publisher: CENGAGE LEARNING - CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 71E
Interpretation Introduction
Interpretation:
The Lewis structures for benzene including resonance structures should be stated.
Concept Introduction:
Lewis structure represents the number of valance electrons around an individual atom in a molecule or a compound. Each atom in Lewis structure follows the octet rule.
In Lewis electron dot symbol, nucleus and inner electrons are represented by an element symbol and valance electrons are represented by dots.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Sulfuric acid is the industrial chemical produced in greatest quantity worldwide. About 90 billion pounds are produced each year in the United States alone. Write the Lewis structure for sulfuric acid, H2SO4, which has twooxygen atoms and two OH groups bonded to the sulfur.
Chloral, Cl3C—CH=O, reacts with water to form the sedative and hypnotic agent chloral hydrate, Cl3C—CH(OH)2. Draw Lewis structures for these substances, and describe the change in molecular shape, if any, that occurs around each of the carbon atoms during the reaction.
Draw two electron-dot resonance structures that obey the octet rule for trichloronitromethane, CCl3NO2, and show the formal charges on N and O in both structures. (Carbon is connected to the chlorines and to nitrogen; nitrogen is also connected to both oxygens.)
Chapter 13 Solutions
EBK CHEMICAL PRINCIPLES
Ch. 13 - Explain the electronegativity trends across a row...Ch. 13 - Prob. 2DQCh. 13 - Prob. 3DQCh. 13 - Prob. 4DQCh. 13 - Prob. 5DQCh. 13 - Prob. 6DQCh. 13 - Prob. 7DQCh. 13 - Prob. 8DQCh. 13 - Prob. 9DQCh. 13 - Arrange the following molecules from most to least...
Ch. 13 - Prob. 11DQCh. 13 - Prob. 12DQCh. 13 - Prob. 13ECh. 13 - Prob. 14ECh. 13 - An alternative definition of electronegativity...Ch. 13 - Prob. 16ECh. 13 - Without using Fig. 13.3, predict the order of...Ch. 13 - Without using Fig. 13.3, predict which bond in...Ch. 13 - Prob. 19ECh. 13 - Prob. 20ECh. 13 - Indicate the bond polarity (show the partial...Ch. 13 - Prob. 22ECh. 13 - Prob. 23ECh. 13 - Prob. 24ECh. 13 - Prob. 25ECh. 13 - Prob. 26ECh. 13 - Prob. 27ECh. 13 - Prob. 28ECh. 13 - Prob. 29ECh. 13 - Prob. 30ECh. 13 - Prob. 31ECh. 13 - Give an example of an ionic compound where both...Ch. 13 - What noble gas has the same electron configuration...Ch. 13 - Which of the following ions have noble gas...Ch. 13 - Give three ions that are isoelectronic with...Ch. 13 - Prob. 36ECh. 13 - Predict the empirical formulas of the ionic...Ch. 13 - Which compound in each of the following pairs of...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Use the following data to estimate Hf for...Ch. 13 - Consider the following:...Ch. 13 - In general, the higher the charge on the ions in...Ch. 13 - Consider the following energy changes: a....Ch. 13 - Prob. 44ECh. 13 - Prob. 45ECh. 13 - The lattice energies of FeCl3,FeCl2,andFe2O3 are...Ch. 13 - Prob. 47ECh. 13 - Prob. 48ECh. 13 - Prob. 49ECh. 13 - Prob. 50ECh. 13 - Prob. 51ECh. 13 - Prob. 52ECh. 13 - Prob. 53ECh. 13 - Prob. 54ECh. 13 - Prob. 55ECh. 13 - Prob. 56ECh. 13 - Prob. 57ECh. 13 - Prob. 58ECh. 13 - Prob. 59ECh. 13 - Prob. 60ECh. 13 - Prob. 61ECh. 13 - Prob. 62ECh. 13 - Prob. 63ECh. 13 - Prob. 64ECh. 13 - Prob. 65ECh. 13 - Prob. 66ECh. 13 - Prob. 67ECh. 13 - Prob. 68ECh. 13 - Prob. 69ECh. 13 - Prob. 70ECh. 13 - Prob. 71ECh. 13 - Prob. 72ECh. 13 - Prob. 73ECh. 13 - Prob. 74ECh. 13 - Prob. 75ECh. 13 - Prob. 76ECh. 13 - Prob. 77ECh. 13 - Prob. 78ECh. 13 - Prob. 79ECh. 13 - Prob. 80ECh. 13 - Prob. 81ECh. 13 - Prob. 82ECh. 13 - Prob. 83ECh. 13 - Prob. 84ECh. 13 - Prob. 85ECh. 13 - Prob. 86ECh. 13 - Prob. 87ECh. 13 - Prob. 88ECh. 13 - Prob. 89ECh. 13 - Prob. 90ECh. 13 - Prob. 91ECh. 13 - Prob. 92ECh. 13 - Prob. 93ECh. 13 - Prob. 94ECh. 13 - Prob. 95ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Prob. 97ECh. 13 - Two variations of the octahedral geometry are...Ch. 13 - Prob. 99ECh. 13 - Predict the molecular structure and the bond...Ch. 13 - Which of the molecules in Exercise 96 have net...Ch. 13 - Prob. 102ECh. 13 - Give two requirements that should be satisfied for...Ch. 13 - What do each of the following sets of...Ch. 13 - Prob. 105ECh. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Consider the following Lewis structure, where E is...Ch. 13 - Prob. 108ECh. 13 - Prob. 109ECh. 13 - Which of the following molecules have net dipole...Ch. 13 - Prob. 111AECh. 13 - Prob. 112AECh. 13 - Prob. 113AECh. 13 - Prob. 114AECh. 13 - Prob. 115AECh. 13 - There are two possible structures of XeF2Cl2 ,...Ch. 13 - Prob. 117AECh. 13 - Prob. 118AECh. 13 - Prob. 119AECh. 13 - Prob. 120AECh. 13 - Prob. 121AECh. 13 - Prob. 122AECh. 13 - Prob. 123AECh. 13 - Prob. 124AECh. 13 - Prob. 125AECh. 13 - Prob. 126AECh. 13 - Prob. 127AECh. 13 - Prob. 128AECh. 13 - Prob. 129AECh. 13 - Prob. 130AECh. 13 - Prob. 131AECh. 13 - Prob. 132AECh. 13 - Prob. 133CPCh. 13 - Prob. 134CPCh. 13 - Given the following information: Heat of...Ch. 13 - Prob. 136CPCh. 13 - A promising new material with great potential as...Ch. 13 - Think of forming an ionic compound as three steps...Ch. 13 - Prob. 139CPCh. 13 - Prob. 140CPCh. 13 - Calculate the standard heat of formation of the...Ch. 13 - Prob. 142CPCh. 13 - Prob. 143MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Nitrosyl azide, N4O, is a pale yellow solid first synthesized in 1993. Write the Lewis structure for nitrosyl azide.arrow_forwardWrite all resonance structures of chlorobenzene, C6H5Cl, a molecule with the same cyclic structure as benzene. In all structures, keep the CCl bond as a single bond. Which resonance structures are the most important?arrow_forwardConsider the pyrosulfate ion, S2O72-. It has no sulfur–sulfur nor oxygen–oxygen bonds. (a) Write a Lewis structure for the pyrosulfate ion using only single bonds. (b) What is the formal charge on the sulfur atoms for the Lewis structure you drew in part (a)? (c) Write another Lewis structure using six bonds and two O—S bonds. (d) What is the formal charge on each atom for the structure you drew in part (c)?arrow_forward
- Using the bond dissociation enthalpies in Table 8.8, estimate the enthalpy of combustion of gaseous methane, CH4, to give water vapor and carbon dioxide gas.arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardConsider peroxynitrite (chemical formula: ONOO−), a structural isomer of the nitrate anion. It is generated in the cell when nitric oxide (NO) reacts with the superoxide radical anion (O2-.). Peroxynitrite is a potent oxidant and nitrating agent and can lead to DNA and protein damage (this is the complete question) Draw the correct Lewis structure for peroxynitrite and indicate approximate bond angles. Tell how many molecular degrees of freedom of motion are present in peroxynitrite and what motions they correspond to.arrow_forward
- Write Lewis structures for the following: (c) C2F6 (contains a C¬C bond), (d) AsO3 3 -, (e) H2SO3 (H is bonded to O), (f) NH2Cl.. Arrange the bonds in each of the following sets in order of increasing polarity: (a) C¬F, O¬F, Be¬F; (b) O¬Cl, S¬Br, C¬P; (c) C¬S, B¬F, N¬O. What is the Lewis symbol for each of the following atoms or ions? (a) K, (b) As, (c) Sn2 + , (d) N3 Write electron configurations for the following ions and determine which have noble-gas configurations: (a) Cd2+, (b) P3-, (c) Zr4+arrow_forward(b) The Murchison meteorite that landed in Australia in 1969 contained 92 different amino acids, including 21 found in Earth organism A skeleton structure (single bond only) of one of these extraterrestrial amino acids is shown below. Draw a Lewis structure, and identify any atoms having a nonzero formal charge. H3N. C ČH2 ČH3 (c) Draw the orbital diagrams and Lewis symbols to depict the formation of Na* and CI ions from the atoms. Give the formula of the compound formed. (d) The predicted bond length for HF is 109 pm (the sum of the covalent radii of H, 37 pm and F, 72 pm), however the actual bond length for HF is shorter (92 pm). It was observed that the difference between predicted and actual bond lengths becomes smaller going down the halogen group from HF to HI Describe these observationsarrow_forwardCyanogen (CN)2 is known as pseodohalogen because it has some properties like halogens. It is composed of two CN’s joined together.(i) Draw the Lewis structure for all the possible combination for (CN)2.(ii) Calculate the formal charge and determine which one of the structures that you have drawn is most stable.(iii) For the stable structure, determine the geometry around the two central atoms.(iv) For the stable structure, draw the dipole arrows for the bonds.(v) Base on the stable structure, determine the polarity of molecule and state your reason.arrow_forward
- 19. :O: || :0-N- O: Which of the following statements, if true, would support the claim that the NO3 ion, represented above, has three resonance structures? (A) The NO3 ion is not a polar species. (B) The oxygen-to-nitrogen-to-oxygen bond angles are 90°. (C) One of the bonds in NO3 is longer than the other two. (D) One of the bonds in NO3¯ is shorter than the other two.arrow_forward(a) Use a polar arrow to indicate the polarity of each bond: N¬H, F¬N, I¬Cl. (b) Rank the following bonds in order of increasing polarity and decreasing percent ionic character: H¬N, H¬O, H¬C.arrow_forward1.) What is the Lewis structure for the methylthiolate anion, CH3S-. Carbon is the central atom. Show any nonzero formal charges. 2.) Proteins are large molecules that affect almost every function of the human body. Proteins are composed of smaller building blocks called amino acids. The simplest amino acid is glycine. When dissolved in water, two atoms in a glycine molecule have a formal charge. In the lewis structure of glycine C2H5NO2 all bonds are drawn (image is provided), but the unbonded valence electrons (lone pairs) are missing. Copy the structure and draw the missing valence electrons (lone pairs). Locate the 2 atoms that have a nonzero formal charge. Calculate the charge at these sites.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY