Concept explainers
(a)
Interpretation:
The new volume with the given conditions of pressure should be calculated.
Concept Introduction:
Boyle’s law states that at constant temperature and amount of gas, the pressure of gas is inversely proportional to volume.
It can be expressed as: P1 V1 = P2 V2.
(b)
Interpretation:
The new volume with the given conditions of pressure should be calculated.
Concept Introduction:
Boyle’s law states that at constant temperature and amount of gas, the pressure of gas is inversely proportional to volume.
It can be expressed as: P1 V1 = P2 V2.
(c)
Interpretation:
The new volume with the given conditions of pressure should be calculated.
Concept Introduction:
Boyle’s law states that at constant temperature and amount of gas, the pressure of gas is inversely proportional to volume.
It can be expressed as: P1 V1 = P2 V2.
Trending nowThis is a popular solution!
Chapter 13 Solutions
Introductory Chemistry: A Foundation
- In an experiment in a general chemistry laboratory, a student collected a sample of a gas over water. The volume of the gas was 265 mL at a pressure of 753 torr and a temperature of 27 C. The mass of the gas was 0.472 g. What was the molar mass of the gas?arrow_forwardPressures of gases in mixtures are referred to as partial pressures and are additive. 1.00 L of He gas at 0.75 atm is mixed with 2.00 L of Ne gas at 1.5 atm at a temperature of 25.0 C to make a total volume of 3.00 L of a mixture. Assuming no temperature change and that He and Ne can be approximated as ideal gases, what are a the total resulting pressure, b the partial pressures of each component, and c the mole fractions of each gas in the mix?arrow_forward5.27 A newly discovered gas has a density of 2.39 g/L at 23.0°C and 715 mm Hg. What is the molar mass of the gas?arrow_forward
- A 1.000-g sample of an unknown gas at 0C gives the following data: P(atm) V (L) 0.2500 3.1908 0.5000 1.5928 0.7500 1.0601 1.0000 0.7930 Use these data to calculate the value of the molar mass at each of the given pressures from the ideal gas law (we will call this the apparent molar mass at this pressure). Plot the apparent molar masses against pressure and extrapolate to find the molar mass at zero pressure. Because the ideal gas law is most accurate at low pressures, this extrapolation will give an accurate value for the molar mass. What is the accurate molar mass?arrow_forwardMake the indicated pressure conversions. msp;a.1.54105Patoatmospheresb.1.21atmtopascalsc.97,345PatommHgd.1.32kPatopascalsarrow_forwardA 0.105-g sample of a gaseous compound has a pressure of 561 mm Hg in a volume of 125 mL at 23.0 C. What is its molar mass?arrow_forward
- 5-118 Isooctane, which has a chemical formula C8H18 is the component of gasoline from which the term octane rating derives. (a) Write the balanced chemical equation for the combustion of isooctane. (b) The density of isooctane is 0.792 g/mL. How many kg of C02 are produced each year by the annual U.S. gasoline consumption of L? (c) What is the volume in liters of this CO2 at STP? (d) The chemical formula for isooctane can be represented by (CH3)3CCH2CH(CH3)2. Draw a Lewis structure of isooctane. (e) Another molecule with the same molecular formula is octane, which can be represented by: When comparing isooctane and octane, one structure is observed to have a boiling point of 99°C, while another is known to have a boiling point Of 125°C. Which substance, isooctane or octane, is expected to have the higher boiling point? (f) Determine whether isooctane or octane is expected to have the greater vapor pressure.arrow_forward2. The volume of a gas sample is 235 mL at a temperature of 25 ℃. At what temperature would that same gas sample have a volume of 310. mL, if the pressure of the gas sample is held constant? −47.0 ℃ 69.4 ℃ 33.1 ℃ 120.℃arrow_forward93 The complete combustion of octane can be used as a model for the burning of gasoline: 2C8H18+25O216CO2+18H2O Assuming that this equation provides a reasonable model of the actual combustion process, what volume of air at 1.0 atm and 25°C must be taken into an engine to burn 1 gallon of gasoline? (The partial pressure of oxygen in air is 0.21 atm and the density of liquid octane is 0.70 g/mL.)arrow_forward
- 5-46 Calculate the molar mass of a gas if 3.30 g of the gas occupies 660. mL. at 735 mm Hg and 27°C.arrow_forwardIf 1 cubic foot-28.3 L-of air at common room conditions of 230C and 0.985 bar is adjusted to STP, what does the volume become?arrow_forwardPlot the data given in Table 5.3 for oxygen at 0C to obtain an accurate molar mass for O2. To do this, calculate a value of the molar mass at each of the given pressures from the ideal gas law (we will call this the apparent molar mass at this pressure). On a graph show the apparent molar mass versus the pressure and extrapolate to find the molar mass at zero pressure. Because the ideal gas law is most accurate at low pressures, this extrapolation will give an accurate value for the molar mass. What is the accurate molar mass?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning