Gradients in three dimensions Consider the following functions f, points P, and unit vectors u.
- a. Compute the gradient of f and evaluate it at P
- b. Find the unit vector in the direction of maximum increase of f at P.
- c. Find the rate of change of the function in the direction of maximum increase at P.
- d. Find the directional derivative at P in the direction of the given vector.
60.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
CODE/CALC ET 3-HOLE
Additional Engineering Textbook Solutions
Pre-Algebra Student Edition
A First Course in Probability (10th Edition)
Introductory Statistics
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Elementary Statistics (13th Edition)
Elementary Statistics: Picturing the World (7th Edition)
- Suppose that a parachutist with linear drag (m=50 kg, c=12.5kg/s) jumps from an airplane flying at an altitude of a kilometer with a horizontal velocity of 220 m/s relative to the ground. a) Write a system of four differential equations for x,y,vx=dx/dt and vy=dy/dt. b) If theinitial horizontal position is defined as x=0, use Euler’s methods with t=0.4 s to compute the jumper’s position over the first 40 s. c) Develop plots of y versus t and y versus x. Use the plot to graphically estimate when and where the jumper would hit the ground if the chute failed to open.arrow_forward61arrow_forwardDetermine if the vector is a gradient and if it is, find a function having the given vector as its gradient. 2xyi + (1+x²) j = 0arrow_forward
- Please answer all parts of this questions for me with clear steps and explanations, thanks in advance.arrow_forward3. a. Given a potential function/- Ax'yz' - Br"y'z -Cx'y'z, where the coefficients 4.B.c, are the last three digits of your index number, find the conservative vector fieldF. i) Use Fin (3.a.) to calculate DİVF ii) Use Fin (3.a.) to calculate CurlF b. A conservative vector field is given as Find the potential functionarrow_forwardThe following is used to model a wave that impacts a concrete wall created by the US Navy speed boat.1. Derive the complete piecewise function of F(t) and F()The concrete wall is 2.8 m long with a cross-section area of 0.05 m2. The force at time equal zero is 200 N. It is also known that the mass is modeled as lumped at the end of 1200 kg and Young’s modulus of 3.6 GPa2. Use *Matlab to simulate and plot the total response of the system at zero initial conditions and t0 = 0.5 sarrow_forward
- Q3 (32 points) Figure 2 shows a potential function with incident particles coming from -o with a total energy Vị a. Do not solve for the constants of the wave functions (16 points). Incident particles V,arrow_forwardA 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A salt solution with 1/5 pound of salt per gallon is added to the tank at 10 gal/min, and the resulting mixture is drained out at 5 gal/min. Let Q(t) denote the quantity (lbs) of salt at time t (min). (a) Write a differential equation for Q(t) which is valid up until the point at which the tank overflows. Q' (t) = = (b) Find the quantity of salt in the tank as it's about to overflow. esc C ✓ % 1 1 a 2 W S # 3 e d $ 4 f 5 rt 99 6 y & 7 h O u * 00 8 O 1 9 1 Oarrow_forwardVerify that each function is an "eigenfunction" for the given linear operator, and determine it's eigenvalue. (a) First derivative; f(x) = e³x (b) Second derivative; g(x) = sin(2x)arrow_forwardComputer Science matlabarrow_forwardFind the solution.arrow_forward2. Heat conduction in a square plate Three sides of a rectangular plate (@ = 5 m, b = 4 m) are kept at a temperature of 0 C and one side is kept at a temperature C, as shown in the figure. Determine and plot the ; temperature distribution T(x, y) in the plate. The temperature distribution, T(x, y) in the plate can be determined by solving the two-dimensional heat equation. For the given boundary conditions T(x, y) can be expressed analytically by a Fourier series (Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley and Sons, 1993):arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole