Gradients in three dimensions Consider the following functions f, points P, and unit vectors u.
- a. Compute the gradient of f and evaluate it at P
- b. Find the unit vector in the direction of maximum increase of f at P.
- c. Find the rate of change of the function in the direction of maximum increase at P.
- d. Find the directional derivative at P in the direction of the given vector.
58.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
CODE/CALC ET 3-HOLE
Additional Engineering Textbook Solutions
Thinking Mathematically (6th Edition)
Elementary Statistics (13th Edition)
College Algebra (7th Edition)
Algebra and Trigonometry (6th Edition)
Elementary Statistics
A First Course in Probability (10th Edition)
- Suppose that a parachutist with linear drag (m=50 kg, c=12.5kg/s) jumps from an airplane flying at an altitude of a kilometer with a horizontal velocity of 220 m/s relative to the ground. a) Write a system of four differential equations for x,y,vx=dx/dt and vy=dy/dt. b) If theinitial horizontal position is defined as x=0, use Euler’s methods with t=0.4 s to compute the jumper’s position over the first 40 s. c) Develop plots of y versus t and y versus x. Use the plot to graphically estimate when and where the jumper would hit the ground if the chute failed to open.arrow_forward61arrow_forwardDetermine if the vector is a gradient and if it is, find a function having the given vector as its gradient. 2xyi + (1+x²) j = 0arrow_forward
- Computer Science matlabarrow_forwardGiven the following function: f(x) = 2x For g(x) = Sf(x) dx, determine g(x).arrow_forwardThe following is used to model a wave that impacts a concrete wall created by the US Navy speed boat.1. Derive the complete piecewise function of F(t) and F()The concrete wall is 2.8 m long with a cross-section area of 0.05 m2. The force at time equal zero is 200 N. It is also known that the mass is modeled as lumped at the end of 1200 kg and Young’s modulus of 3.6 GPa2. Use *Matlab to simulate and plot the total response of the system at zero initial conditions and t0 = 0.5 sarrow_forward
- A 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A salt solution with 1/5 pound of salt per gallon is added to the tank at 10 gal/min, and the resulting mixture is drained out at 5 gal/min. Let Q(t) denote the quantity (lbs) of salt at time t (min). (a) Write a differential equation for Q(t) which is valid up until the point at which the tank overflows. Q' (t) = = (b) Find the quantity of salt in the tank as it's about to overflow. esc C ✓ % 1 1 a 2 W S # 3 e d $ 4 f 5 rt 99 6 y & 7 h O u * 00 8 O 1 9 1 Oarrow_forwardUsing Matlab, find the positive minimum point of the function f(x) = x^-2 * tan(x) by computing the zeros of f' (derivative of f) using Secant's methodarrow_forwardVerify that each function is an "eigenfunction" for the given linear operator, and determine it's eigenvalue. (a) First derivative; f(x) = e³x (b) Second derivative; g(x) = sin(2x)arrow_forward
- Find the differential equation from the transfer of the function for the Giving following system and draw the block diagram of the system. 3 H = x(s) u(s) 0.5s + 1arrow_forwarda. For the function and point below, find f'(a). b. Determine an equation of the line tangent to the graph of f at (a,f(a)) for the given value of a. f(x) = 2x°, a = 1 %3D ..... a. f'(a) =arrow_forward7. A system is described by the following differential equation: dy +3- dr d²y dy dx d²x dx +5. +y=- +6- + &r dt dt3 dt2 dt Find the expression for the transfer function of the system, Y(s)/X(s). [Section: 2.3]arrow_forward
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole