Walking on a surface Consider the following surfaces specified in the form z = f ( x, y ) and the oriented curve C in the xy-plane. a. In each case, find z’ ( t ) . b. Imagine that you are walking on the surface directly above the curve C in the direction of positive orientation. Find the values of t for which you are walking uphill ( that is, z is increasing ) . 56. z = 2 x 2 + y 2 + 1 , C : x = 1 + cos t , y = sin t ; 0 ≤ t ≤ 2 π
Walking on a surface Consider the following surfaces specified in the form z = f ( x, y ) and the oriented curve C in the xy-plane. a. In each case, find z’ ( t ) . b. Imagine that you are walking on the surface directly above the curve C in the direction of positive orientation. Find the values of t for which you are walking uphill ( that is, z is increasing ) . 56. z = 2 x 2 + y 2 + 1 , C : x = 1 + cos t , y = sin t ; 0 ≤ t ≤ 2 π
Solution Summary: The author explains that the value of zprime is -5mathrmsin2t.
Walking on a surfaceConsider the following surfaces specified in the form z = f(x, y) and the oriented curve C in the xy-plane.
a. In each case, find z’ (t).
b. Imagine that you are walking on the surface directly above the curve C in the direction of positive orientation. Find the values of t for which you are walking uphill (that is, z is increasing).
56.
z
=
2
x
2
+
y
2
+
1
,
C
:
x
=
1
+
cos
t
,
y
=
sin
t
;
0
≤
t
≤
2
π
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Automobile Department
Subject :Engineering Analysis
Time: 2 hour
Date:27-11-2022
کورس اول تحليلات
تعمیر )
1st month exam / 1st semester (2022-2023)/11/27
Note: Answer all questions,all questions have same degree.
Q1/: Find the following for three only.
1-
4s
C-1
(+2-3)2 (219) 3.0 (6+1)) (+3+5)
(82+28-3),2-
,3-
2-1
4-
Q2/:Determine the Laplace transform of the function t sint.
Q3/: Find the Laplace transform of
1,
0≤t<2,
-2t+1,
2≤t<3,
f(t) =
3t,
t-1,
3≤t 5,
t≥ 5
Q4: Find the Fourier series corresponding to the function
0
-5
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Subject :Engineering Analysis
Time: 80 min
Date:11-12-2022
Automobile Department
2nd month exam / 1" semester (2022-2023)
Note: Answer all questions,all questions have same degree.
کورس اول
شعر 3
Q1/: Use a Power series to solve the differential equation:
y" - xy = 0
Q2/:Evaluate using Cauchy's residue theorem,
sinnz²+cosz²
dz, where C is z = 3
(z-1)(z-2)
Q3/:Evaluate
dz
(z²+4)2
Where C is the circle /z-i/-2,using Cauchy's residue theorem.
Examiner: Dr. Wisam N. Hassan
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Subject :Engineering Analysis
Time: 80 min
Date:11-12-2022
Automobile Department
2nd month exam / 1" semester (2022-2023)
Note: Answer all questions,all questions have same degree.
کورس اول
شعر 3
Q1/: Use a Power series to solve the differential equation:
y" - xy = 0
Q2/:Evaluate using Cauchy's residue theorem,
sinnz²+cosz²
dz, where C is z = 3
(z-1)(z-2)
Q3/:Evaluate
dz
(z²+4)2
Where C is the circle /z-i/-2,using Cauchy's residue theorem.
Examiner: Dr. Wisam N. Hassan
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY