Changes in cone volume The volume of a right circular cone with radius r and height h is V = π r 2 h / 3 . a. Approximate the change in the volume of the cone when the radius changes from r = 6.5 to r = 6.6 and the height changes from h = 4.20 to h = 4.15. b. Approximate the change in the volume of the cone when the radius changes from r = 5.40 to r = 5 37 and the height changes from h = 12.0 to h = 11.96.
Changes in cone volume The volume of a right circular cone with radius r and height h is V = π r 2 h / 3 . a. Approximate the change in the volume of the cone when the radius changes from r = 6.5 to r = 6.6 and the height changes from h = 4.20 to h = 4.15. b. Approximate the change in the volume of the cone when the radius changes from r = 5.40 to r = 5 37 and the height changes from h = 12.0 to h = 11.96.
Solution Summary: The author explains the approximation of the volume of a right circular cone V=pi r2h3
Changes in cone volume The volume of a right circular cone with radius r and height h is
V
=
π
r
2
h
/
3
.
a. Approximate the change in the volume of the cone when the radius changes from r = 6.5 to r = 6.6 and the height changes from h = 4.20 to h = 4.15.
b. Approximate the change in the volume of the cone when the radius changes from r = 5.40 to r = 5 37 and the height changes from h = 12.0 to h = 11.96.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY