Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡ 2 or ¡ 3 , and let c be a constant. Prove the following gradient rules. a. Constants Rule: ▿ ( cf ) = c ▿ f b. Sum Rule : ▿ ( f + g ) = ▿ f + ▿ g c. Product Rule: ▿ ( fg ) = (▿ f ) g + f ▿ g d. Quotient Rule : ∇ ( f g ) = g ∇ f − f ∇ g g 2 e . Chain Rule: ∇ ( f ∘ g ) = f ’ ( g ) ∇ g , where f is a function of one variable
Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡ 2 or ¡ 3 , and let c be a constant. Prove the following gradient rules. a. Constants Rule: ▿ ( cf ) = c ▿ f b. Sum Rule : ▿ ( f + g ) = ▿ f + ▿ g c. Product Rule: ▿ ( fg ) = (▿ f ) g + f ▿ g d. Quotient Rule : ∇ ( f g ) = g ∇ f − f ∇ g g 2 e . Chain Rule: ∇ ( f ∘ g ) = f ’ ( g ) ∇ g , where f is a function of one variable
Solution Summary: The author explains that the constant rule nabla is differentiable at the point (x,y,z).
Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡2 or ¡3, and let c be a constant. Prove the following gradient rules.
a. Constants Rule: ▿ (cf) = c▿f
b. Sum Rule: ▿ (f + g) = ▿f + ▿g
c. Product Rule: ▿ (fg) = (▿f)g + f▿g
d. Quotient Rule:
∇
(
f
g
)
=
g
∇
f
−
f
∇
g
g
2
e. Chain Rule:
∇
(
f
∘
g
)
=
f
’
(
g
)
∇
g
, where f is a function of one variable
With integration, one of the major concepts of calculus. Differentiation is the derivative or rate of change of a function with respect to the independent variable.
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.