Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡ 2 or ¡ 3 , and let c be a constant. Prove the following gradient rules. a. Constants Rule: ▿ ( cf ) = c ▿ f b. Sum Rule : ▿ ( f + g ) = ▿ f + ▿ g c. Product Rule: ▿ ( fg ) = (▿ f ) g + f ▿ g d. Quotient Rule : ∇ ( f g ) = g ∇ f − f ∇ g g 2 e . Chain Rule: ∇ ( f ∘ g ) = f ’ ( g ) ∇ g , where f is a function of one variable
Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡ 2 or ¡ 3 , and let c be a constant. Prove the following gradient rules. a. Constants Rule: ▿ ( cf ) = c ▿ f b. Sum Rule : ▿ ( f + g ) = ▿ f + ▿ g c. Product Rule: ▿ ( fg ) = (▿ f ) g + f ▿ g d. Quotient Rule : ∇ ( f g ) = g ∇ f − f ∇ g g 2 e . Chain Rule: ∇ ( f ∘ g ) = f ’ ( g ) ∇ g , where f is a function of one variable
Solution Summary: The author explains that the constant rule nabla is differentiable at the point (x,y,z).
Rules for gradients Use the definition of the gradient (in two or three dimensions), assume that f and g are differentiable functions on ¡2 or ¡3, and let c be a constant. Prove the following gradient rules.
a. Constants Rule: ▿ (cf) = c▿f
b. Sum Rule: ▿ (f + g) = ▿f + ▿g
c. Product Rule: ▿ (fg) = (▿f)g + f▿g
d. Quotient Rule:
∇
(
f
g
)
=
g
∇
f
−
f
∇
g
g
2
e. Chain Rule:
∇
(
f
∘
g
)
=
f
’
(
g
)
∇
g
, where f is a function of one variable
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
T
1
7. Fill in the blanks to write the calculus problem that would result in the following integral (do
not evaluate the interval). Draw a graph representing the problem.
So
π/2
2 2πxcosx dx
Find the volume of the solid obtained when the region under the curve
on the interval
is rotated about the
axis.
38,189
5. Draw a detailed graph to and set up, but do not evaluate, an integral for the volume of the
solid obtained by rotating the region bounded by the curve: y = cos²x_for_ |x|
≤
and the curve y
y =
about the line
x =
=플
2
80
F3
a
FEB
9
2
7
0
MacBook Air
3
2
stv
DG
Find f(x) and g(x) such that h(x) = (fog)(x) and g(x) = 3 - 5x.
h(x) = (3 –5x)3 – 7(3 −5x)2 + 3(3 −5x) – 1
-
-
-
f(x) = ☐
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.