Gradients in three dimensions Consider the following functions f, points P, and unit vectors u . a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 56. f ( x , y , z ) = 4 − x 2 + 3 y 2 + z 2 2 ; P ( 0 , 2 , − 1 ) ; 〈 0 , 1 2 , 1 2 〉
Gradients in three dimensions Consider the following functions f, points P, and unit vectors u . a. Compute the gradient of f and evaluate it at P b. Find the unit vector in the direction of maximum increase of f at P. c. Find the rate of change of the function in the direction of maximum increase at P. d. Find the directional derivative at P in the direction of the given vector. 56. f ( x , y , z ) = 4 − x 2 + 3 y 2 + z 2 2 ; P ( 0 , 2 , − 1 ) ; 〈 0 , 1 2 , 1 2 〉
Solution Summary: The author explains how the gradient of f(x,y,z) is computed as follows.
Gradients in three dimensionsConsider the following functions f, points P, and unit vectorsu.
a.Compute the gradient of f and evaluate it at P
b.Find the unit vector in the direction of maximum increase of f at P.
c.Find the rate of change of the function in the direction of maximum increase at P.
d.Find the directional derivative at P in the direction of the given vector.
56.
f
(
x
,
y
,
z
)
=
4
−
x
2
+
3
y
2
+
z
2
2
;
P
(
0
,
2
,
−
1
)
;
〈
0
,
1
2
,
1
2
〉
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
8. For x>_1, the continuous function g is decreasing and positive. A portion of the graph of g is shown above. For n>_1, the nth term of the series summation from n=1 to infinity a_n is defined by a_n=g(n). If intergral 1 to infinity g(x)dx converges to 8, which of the following could be true? A) summation n=1 to infinity a_n = 6. B) summation n=1 to infinity a_n =8. C) summation n=1 to infinity a_n = 10. D) summation n=1 to infinity a_n diverges.
PLEASE SHOW ME THE RIGHT ANSWER/SOLUTION
SHOW ME ALL THE NEDDED STEP
13: If the perimeter of a square is shrinking at a rate of 8 inches per second, find the rate at which its area is changing when its area is 25 square inches.
DO NOT GIVE THE WRONG ANSWER
SHOW ME ALL THE NEEDED STEPS
11: A rectangle has a base that is growing at a rate of 3 inches per second and a height that is shrinking at a rate of one inch per second. When the base is 12 inches and the height is 5 inches, at what rate is the area of the rectangle changing?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.