Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 62P
A mine elevator is supported by a single steel cable 2.5 cm in diameter. The total mass of the elevator cage and occupants is 670 kg. By how much does the cable stretch when the elevator hangs by (a) 12 m of cable and (b) 362 m of cable? (Neglect the mass of the cable.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A mine elevator is supported by a single steel cable 2.5 cm in diameter. The total mass of the elevator cage and occupants is 670 kg. By how much does the cable stretch when the elevator hangs by (a) 12 m of cable and (b) 362 m of cable? (Neglect the mass of the cable.)
A steel wire of diameter 4.72 mm stretches by 7.98 mm when a 320 -kg piece of equipment is suspended from it. If the wire had a diameter of 4.75 mm instead, by what distance in mm would the equipment stretch the wire?
In a skyscraper, an elevator is suspended from three equal, parallel 300-m-long steel cables, each Of diameter 1.0 cm. How much do these cables stretch if the mass of the elevator is 1000 kg?
Chapter 12 Solutions
Fundamentals of Physics Extended
Ch. 12 - Figure 12-15 shows three situations in which the...Ch. 12 - In Fig, 12-16, a rigid beam is attached to two...Ch. 12 - Figure 12-17 shows four overhead views of rotating...Ch. 12 - A ladder leans against a frictionless wall but is...Ch. 12 - Figure 12-18 shows a mobile of toy penguins...Ch. 12 - Figure 12-19 shows an overhead view of a uniform...Ch. 12 - In Fig. 12-20, a stationary 5 kg rod AC is held...Ch. 12 - Three piatas hang from the stationary assembly of...Ch. 12 - In Fig. 12-22, a vertical rend is hinged at its...Ch. 12 - Figure 12-23 shows a horizontal block that is...
Ch. 12 - The table gives the initial lengths of three reds...Ch. 12 - A physical therapist gone wild has constructed the...Ch. 12 - Prob. 1PCh. 12 - An automobile with a mass of 1360 kg has 3.05 m...Ch. 12 - SSM WWWIn Fig. 12-26, a uniform sphere of mass m =...Ch. 12 - An archers bow is drawn at its midpoint until the...Ch. 12 - ILWA rope of negligible mass is stretched...Ch. 12 - A scaffold of mass 60 kg and Length 5.0 m is...Ch. 12 - A 75 kg window cleaner uses a 10 kg ladder that is...Ch. 12 - A physics Brady Bunch, whose weights in newtons...Ch. 12 - SSMA meter stick balances horizontally on a...Ch. 12 - GO The system in Fig. 12-28 is in equilibrium,...Ch. 12 - SSMFigure 12-29 shows a diver of weight 580 N...Ch. 12 - In Fig. 12-30, trying to gel his car out of mud, a...Ch. 12 - Figure 12-31 shows the anatomical structures in...Ch. 12 - In Fig. 12-32, a horizontal scaffold, of length...Ch. 12 - ILWForces F1, F2 and F3 act on the structure of...Ch. 12 - A uniform cubical crate is 0.750 m on each side...Ch. 12 - In Fig. 12-34, a uniform beam of weight 500 N and...Ch. 12 - GO In Fig. 12-35, horizontal scaffold 2, with...Ch. 12 - To crack a certain nut in a nutcracker, forces...Ch. 12 - A bowler holds a bowling ball M = 7.2 kg in the...Ch. 12 - ILWThe system in Fig. 12-38 is in equilibrium. A...Ch. 12 - GO In Fig-12-39, a 55 kg rock climber is in a...Ch. 12 - GO In Fig. 12-40, one end of a uniform beam of...Ch. 12 - GO In Fig. 12-41, a climber with a weight of 533.8...Ch. 12 - SSM WWWIn Fig. 12-42, what magnitude of constant...Ch. 12 - GO In Fig. 12-43, a climber leans out against a...Ch. 12 - GO In Fig. 12-44, a 15 kg block is held in place...Ch. 12 - GO In Fig. 12-45, suppose the length L of the...Ch. 12 - A door has a height of 2.1 m along a y axis that...Ch. 12 - GO In Fig. 12-46, a 50.0 kg uniform square sign,...Ch. 12 - GO In Fig. 12-47, a nonuniform bar is suspended at...Ch. 12 - In Fig. 12-48, the driver of a car on a horizontal...Ch. 12 - Figure 12-49a shows a vertical uniform beam of...Ch. 12 - In Fig. 12-45, a thin horizontal bar AB of...Ch. 12 - SSM WWWA cubical box is filled with sand and...Ch. 12 - Figure 12-50 shows a 70 kg climber hanging by only...Ch. 12 - GO In Fig. 12-51, a uniform plank, with a length L...Ch. 12 - In Fig, 12-52, uniform beams A and B are attached...Ch. 12 - For the stepladder shown in Fig. 12-53, sides AC...Ch. 12 - Figure 12-54a shows a horizontal uniform beam of...Ch. 12 - A crate, in the form of a cube with edge lengths...Ch. 12 - In Fig. 12-7 and the associated sample problem,...Ch. 12 - SSM ILWA horizontal aluminum rod 4.8 cm in...Ch. 12 - Figure 12-55 shows the stressstrain curve for a...Ch. 12 - In Fig. 12-56, a lead brick rests horizontally on...Ch. 12 - Figure 12-57 shows an approximate plot of stress...Ch. 12 - A tunnel of length L = 150 m, height H = 7.2 m,...Ch. 12 - Figure 12-59 shows the stress versus strain plot...Ch. 12 - GO In Fig. 12-60, a 103kg uniform log hangs by two...Ch. 12 - GO Figure 12-61 represents an insect caught at the...Ch. 12 - GO Figure 12-62 is an overhead view of a rigid rod...Ch. 12 - After a fall, a 95 kg rock climber finds himself...Ch. 12 - SSMIn Fig 12-63, a rectangular slab of slate rests...Ch. 12 - A uniform ladder whose length is 5.0 m and whose...Ch. 12 - SSM In Fig. 12-64, block A mass 10 kg is in...Ch. 12 - Figure 12-65a shows a uniform ramp between two...Ch. 12 - GO In Fig. 12-66, a 10 kg sphere is supported on a...Ch. 12 - In Fig. 12-67a, a uniform 40.0 kg beam is centered...Ch. 12 - SSM In Fig. 12-68, an 817 kg construction bucket...Ch. 12 - In Fig. 12-69, a package of mass m hangs from a...Ch. 12 - ILWThe force F in Fig. 12-70 keeps the 6.40 kg...Ch. 12 - A mine elevator is supported by a single steel...Ch. 12 - Four bricks of length L, identical and uniform,...Ch. 12 - Prob. 64PCh. 12 - In Fig. 12-73, a uniform beam with a weight of 60...Ch. 12 - A uniform beam is 5.0 m long and has a mass of 53...Ch. 12 - A solid copper cube has an edge length of 85.5 cm....Ch. 12 - A construction worker attempts to lift a uniform...Ch. 12 - SSM In Fig. 12-76, a uniform rod of mass m is...Ch. 12 - A 73 kg man stands on a level bridge of length L....Ch. 12 - SSMA uniform cube of side length 8.0 cm rests cm a...Ch. 12 - The system in Fig. 12-77 is in equilibrium. The...Ch. 12 - SSMA uniform ladder is 10 m long and weighs 200 N....Ch. 12 - A pan balance is made up of a rigid, massless rod...Ch. 12 - The rigid square frame in Fig. 12-79 consists of...Ch. 12 - A gymnast with mass 46.0 stands on the end of a...Ch. 12 - Figure 12-81 shows a 300 kg cylinder that is...Ch. 12 - In Fig. 12-82, a uniform beam of length 12.0 m is...Ch. 12 - Four bricks of length L, identical and uniform,...Ch. 12 - A cylindrical aluminum rod, with an initial length...Ch. 12 - Prob. 81PCh. 12 - If the square beam in Fig. 12-6a and the...Ch. 12 - Figure 12-84 shows a stationary arrangement of two...Ch. 12 - A makeshift swing is constructed by makings loop...Ch. 12 - Figure 12-85a shows details of a finger in the...Ch. 12 - A trap door in a ceiling is 0.91 m square, has a...Ch. 12 - A particle is acted on by forces given, in...Ch. 12 - The leaning Tower of Pisa is 59.1 m high and 7.44...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Solve the previous problem using Table A.7.
Fundamentals Of Thermodynamics
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
1.2 Ask two of your friends (not in class) to define the terms in problem1.1.
Do their answers agee with the d...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two rods, one made of copper and the other of steel, have the same dimensions. If the copper rod stretches by 0.15mm under some stress, how much does the steel rod stretch under the same stress?arrow_forwardProblems 33 and 34 are paired. One end of a uniform beam that weighs 2.80 102 N is attached to a wall with a hinge pin. The other end is supported by a cable making the angles shown in Figure P14.33. Find the tension in the cable. FIGURE P14.33 Problems 33 and 34.arrow_forwardIn Example 14.3, we found that one of the steel cables supporting an airplane at the Udvar-Hazy Center was under a tension of 9.30 103 N. Assume the cable has a diameter of 2.30 era and an initial length of 8.00 m before the plane is suspended on the cable. How much longer is the cable when the plane is suspended on it?arrow_forward
- A brass wire and a steel wire, both of the same length, are extended by 1.0 mm under the same force. Is the cross-sectional radius of the brass wire more, less, or equal to the cross-sectional radius of the steel wire? Explain. Youngs moduli for brass and steel are 1.0 1010 N/m2 and 2.0 1011 N/m2, respectively.arrow_forwardA wooden door 2.1 m high and 0.90 m wide is hung by two hinges 1.8 m apart. The lower hinge is 15 cm above the bottom of the door. The center of mass of the door is at its geometric center, and the weight of the door is 260 N, which is supported equally by both hinges. Find the horizontal force exerted by each hinge on the door.arrow_forwardA 20.0-kg horizontal plank 4.00 in long rests on two supports, one at the left end and a second 1.00 m from the right end. What is the magnitude of the force exerted on the plank by the support near the right end? (a) 32.0 N (b) 45.2 N (c) 112 N (d) 131 N (e) 98.2 Narrow_forward
- A tightrope walker stands on a wire that is supported by a pole at each end. The tightrope walker creates a tension of 3.42 ✕ 103 N in a wire making an angle 6.2° below the horizontal with each supporting pole. Calculate how much this tension stretches the steel wire (in cm) if it was originally 16 m long and 0.50 cm in diameter. There is no accompanying image. This is the complete question.arrow_forwardDuring a walk on a rope, a tightrope walker creates a tension of 3.94 × 103 N in a wire that is stretched between two supporting poles that are 15.0 m apart. The wire has a diameter of 0.50 cm when it is not stretched. When the walker is on the wire in the middle between the poles the wire makes an angle of 5.0° below the horizontal. How much does this tension stretch the steel wire when the walker is this position?arrow_forwardA tightrope walker stands on a wire that is supported by a pole at each end. The tightrope walker creates a tension of 3.42 ✕ 103 N in a wire making an angle 6.2° below the horizontal with each supporting pole. Calculate how much this tension stretches the steel wire (in cm) if it was originally 16 m long and 0.50 cm in diameter. This question keeps getting rejected as incomplete. This is not incomplete. There is no image to accompany it. This is the entire question. PLEASE stop rejecting it. It is getting incredibly frustrating.arrow_forward
- A suspender rod of a suspension bridge is 25.0 m long. If the rod is made of steel, what must its diameter be so that it does not stretch more than 1.0 cm when a 2.5 × 104 -kg truck passes by it? Assume that the rod supports all of the weight of the truck.arrow_forwardA cable is 100 m long and has a cross-sectional area of 1.0 x 10-6 m2. A 1000 N force is applied to stretch the cable. The elastic modulus for the cable is 1.0 × 1011 N/m2. How far does it stretch?arrow_forwardA mineshaft has an ore elevator hung from a single braided cable of diameter 2.5 cm. Young’s modulus of the cable is 10 x 1010 N/m2. When the cable is fully extended, the end of the cable is 800 m below the support. How much does the fully extended cable stretch when 1000 kg of ore is loaded?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY