Concept explainers
In Fig. 12-34, a uniform beam of weight 500 N and length 3.0 m is suspended horizontally. On the left it is hinged to a wall; on the right it is supported by a cable bolted to the wall at distance D above the beam. The least tension that will snap the cable is 1200 N. (a) What value of D corresponds to that tension? (b) To prevent the cable from snapping, should D be increased or decreased from that value?
Figure 12-34 Problem 17.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Principles of Anatomy and Physiology
Cosmic Perspective Fundamentals
Living By Chemistry: First Edition Textbook
Fundamentals Of Thermodynamics
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
- d)arrow_forward1 Figure 12-15 shows three situations in which the same horizontal rod is supported by a hinge on a wall at one end and a cord at its other end. Without written calculation, rank the situa- tions according to the magnitudes of (a) the force on the rod from the cord, (b) the vertical force on the rod from the hinge, and (c) the horizontal force on the rod from the hinge, greatest first. Бо° 50° (1) (2) (3)arrow_forwardC)arrow_forward
- Questions 15-19 A rod of length L with non-uniform mass distribution is hinged horizontally to a vertical wall from one end. The rod is supported by a rope from the other end as shown in the figure such that the rope makes an angle of 30° with the horizontal. The linear mass density (mass per unit of length) of the rod is A(x)=8Cx/L where x is the distance from the hinge (x < L) and C is a constant. The unit of C is kg. The distance between point mass m and the hinge is L/2. M 15. What is mass M of the rode? (а) 8C/3 (Ь) 2C (е) С/2 (а) С (е) 2C/3arrow_forwardInthe figure, one end of a uniform beam of weight 440 N is hinged to a wall; the other end is supported by a wire that makes angles 8= 26° with both wall and beam. Find (a) the tension in the wire and the (b) horizontal and (c) vertical components of the force of the hinge on the beam. Hinge (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardIn the figure, one end of a uniform beam of weight 100 N is hinged to a wall; the other end is supported by a wire that makes angles 8- 29 with both wall and beam. Find (a) the tension in the wire and the (b) horizontal anid (c) vertical components of the force of the hinge on the beam. Hinge (a) Number Units Units (b) Number Units (c) Nurmiberarrow_forward
- An angler hangs a 4.50 kg fish from a vertical steel wire 1.50 m long and 5.00 * 10-3 cm2 in cross-sectional area. The upper end of the wire is securely fastened to a support. (a) Calculate the amount the wire is stretched by the hanging fish. The angler now applies a varying force F at the lower end of the wire, pulling it very slowly downward by 0.500 mm from its equilibrium position. For this downward motion, calculate (b) the work done by gravity; (c) the work done by the force F S ; (d) the work done by the force the wire exerts on the fish; and (e) the change in the elastic potential energy (the potential energy associated with the tensile stress in the wire). Compare the answers in parts (d) and (e).arrow_forwardIn the figure, one end of a uniform beam of weight 390 N is hinged to a wall; the other end is supported by a wire that makes angles 0D 32° with both wall and beam. Find (a) the tension in the wire and the (b) horizontal and (c) vertical components of the force of the hinge on the beam. Hinge (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardIn the figure, one end of a uniform beam of weight 110 N is hinged to a wall; the other end is supported by a wire that makes angles 0 = 31° with both wall and beam. Find (a) the tension in the wire and the (b) horizontal and (c) vertical components of the force of the hinge on the beam. (a) Number (b) Number Mo (c) Number i Units Units Units Hinge 6 <arrow_forward
- A mine elevator is supported by a single steel cable 2.5 cm in diameter. The total mass of the elevator cage and occupants is 670 kg. By how much does the cable stretch when the elevator hangs by (a) 12 m of cable and (b) 362 m of cable? (Neglect the mass of the cable.)arrow_forwardA uniform rod is attached to a wall by a hinge at its base. The rod has a mass of 7.5 kg, a length of 2.3 m, is at an angle of 29° above the horizontal, and is held in place by a horizontal cord attached to the other end of the rod and bolted to the wall above the base of the rod. (a) Determine the tension in the cord. 63.715 X Where is a convenient point about which to take the torques? See if you can write an expression for the torque in terms of the force producing the torque and the perpendicular distance from the line of action of the force to the point about which we have specified to determine the torque. See if you can write a second condition of equilibrium that will allow you to determine the tension in the cord. N (b) Determine the horizontal and vertical components of the force exerted on the rod by the hinge. 36.788 X FH = Now that you know the tension in the cord from part (a), see if you can write a first condition of equilibrium statement that will allow you to…arrow_forwardA uniform sign of weight Fg and width 2L hangs from a light, horizontal beam hinged at the wall and supported by a cable (as shown). Determine (a) the tension in the cable and (b) the components of the reaction force exerted by the wall on the beam in terms of Fg , d, L, and θ.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning