Concept explainers
Figure 12-31 shows the anatomical structures in the lower leg and foot that are involved in standing on tiptoe, with the heel raised slightly off the floor so that the foot effectively contacts the floor only at point P. Assume distance a = 5.0 cm, distance b = 15 cm, and the person’s weight W = 900 N. Of the forces acting on the foot, what are the (a) magnitude and (b) direction (up or down) of the force at point A from the calf muscle and the (c) magnitude and (d) direction (up or down) of the force at point B from the lower leg bones?
Figure 12-31 Problem 13.
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Biology: Life on Earth (11th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
The Cosmic Perspective (8th Edition)
- A diver of weight 470 N stands at the end of a diving board of length L = 4.8 m and negligible mass (the figure). The board is fixed to two pedestals separated by distance d = 1.0 m. Take the upward direction to be positive. Of the forces acting on the board, what are (a) the force from the left pedestal and (b) the force from the right pedestal? (a) Number Units (b) Number i Unitsarrow_forwardA scaffold of mass 79 kg and length 5.0 m is supported in a horizontal position by a vertical cable at each end. A window washer of mass 84 kg stands at a point 1.1 m from one end. What is the tension in (a) the nearer (relative to the person) cable and (b) the farther (relative to the person) cable? (a) Number i Units (b) Number i Unitsarrow_forwarda diver of weight 580 N standing at the end of a diving board with a length of L =4.5 m and negligible mass. The board is fixed to two pedestals (supports) that are separated by distance d = 1.5 m. Of the forces acting on the board, what are the (a) magnitude and (b) direction (up or down) of the force from the left pedestal and the (c) magnitude and (d) direction (up or down) of the force from the right pedestal? (e) Which pedestal (left or right) is being stretched, and (f) which pedestal is being compressed?arrow_forward
- A scaffold of mass 71 kg and length 4.8 mis supported in a horizontal position by a vertical cable at each end. A window washer of mass 64 Kg stands at a point 2.4 m from one end. What is the tension in (a) the nearer (relative to the person) cable and (b) the farther (relative to the person) cable? (a) Number Unitsarrow_forwardThe patellar tendon attaches to the tibia at the tibial tuberosity at a perpendicular distance of 4.91 cm from the center of the knee joint. During an isometric contraction, the lower leg is held at an angle of 35° of knee extension with a 400 N weight strapped to the ankle. The weight is 52 cm from the knee joint center. What is the force produced by the quadriceps to hold this position? Ignore the weight of the leg.arrow_forwardA 73 kg man stands on a level bridge of length L. He is at distance L/4 from one end. The bridge is uniform and weighs 2.7 kN.What are the magnitudes of the vertical forces on the bridge from its supports at (a) the end farther from him and (b) the nearer end?arrow_forward
- A beam with a length of 2 m and a mass of 10 kg supports a 50 kg box. The beam is connected to a wall by a hinge at its base and a horizontal wire. The wire is connected to the beam 1.5 m from the hinge and makes an angle θ of 35o to the beam. The goal is to find the tension in the wire and the horizontal and vertical components of the force exerted by the hinge on the boardarrow_forwardA beam with length of 2 m and a mass of 10 kg supports a 50 kg box. The beam is connected to a wall by a hinge at its base and a horizontal wire. The wire is connected to the beam 1.5 m from the hinge and makes an angle θ of 35o to the beam. The goal is to find the tension in the wire and the horizontal and vertical components of the force exerted by the hinge on the board. Suppose the maximum tension that the wire can withstand is 1500 N. What is the maximum load that the hinge can support before the wire breaks?arrow_forwardA uniform cube of side length 8.0 cm rests on a horizontal floor.The coefficient of static friction between cube and floor is m. A horizontal pull is applied perpendicular to one of the vertical faces of the cube, at a distance 7.0 cm above the floor on the vertical midline of the cube face. The magnitude of is gradually increased. During that increase, for what values of m will the cube eventually (a) begin to slide and (b) begin to tip? (Hint: At the onset of tipping, where is the normal force located?)arrow_forward
- 6m T 10m A 8m Figure 4 A B 6. A horizontal beam AB of mass m = 20kg is supported from end B by a cable and hinged to a A vertical wall at end A. Calculate the magnitude of the tension T in the cable when Batman, who has a mass M = 80 kg, stands midway along the beam. What are the x and y components of the force at the hinge?arrow_forwardA uniform board is suspended from a ceiling and supported horizontally by two wires, A and B. The board is 2.0 m long and has a mass of 25 kg. What is the tension in each of the two wires when a sign of 35 kg is hung on the board a distance of 0.50 m from one end?arrow_forwardA construction worker attempts to lift a uniform beam off the floor and raise it to a vertical position. The beam is 2.50 m long and weighs 500 N. At a certain instant the worker holds the beam momentarily at rest with one end at distance d =1.50 m above the floor, , by exerting a force on the beam, perpendicular to the beam. (a) What is the magnitude P? (b) What is the magnitude of the (net) force of the floor on the beam? (c) What is the minimum value the coefficient of static friction between beam and floor can have in order for the beam not to slip at this instant?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON