Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 55P
SSM In Fig. 12-64, block A (mass 10 kg) is in equilibrium, but it would slip if block B (mass 5.0 kg) were any heavier. For angle θ = 30°, what is the coefficient of static friction between block A and the surface below it?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 200-lb man walks up an inclined plank of negligible weight which makes an angle of 70o with the wall. The coefficient of static friction between the floor and the ladder is 0.3 and that between the ladder and the wall is 0.2. When the man is at a horizontal distance X from the foot of the plank, the plank would begin toslide.
(a) Draw a complete FBD of the system.
Find (b) the frictional force on the floor, and the frictional force on the wall and
(c) the horizontal distance X.
A particle, of mass 6 kg, is in equilibrium on a rough horizontal plane under a force of magnitude T N, which acts at an angle 15 above the horizontal. Given the coefficient of friction between the particle and the rough horizontal plane is 0.35, what values could T take?
57. ssm A worker stands still on a roof sloped at an angle of 36° above
the horizontal. He is prevented from slipping by a static frictional force
of 390 N. Find the mass of the worker.
Chapter 12 Solutions
Fundamentals of Physics Extended
Ch. 12 - Figure 12-15 shows three situations in which the...Ch. 12 - In Fig, 12-16, a rigid beam is attached to two...Ch. 12 - Figure 12-17 shows four overhead views of rotating...Ch. 12 - A ladder leans against a frictionless wall but is...Ch. 12 - Figure 12-18 shows a mobile of toy penguins...Ch. 12 - Figure 12-19 shows an overhead view of a uniform...Ch. 12 - In Fig. 12-20, a stationary 5 kg rod AC is held...Ch. 12 - Three piatas hang from the stationary assembly of...Ch. 12 - In Fig. 12-22, a vertical rend is hinged at its...Ch. 12 - Figure 12-23 shows a horizontal block that is...
Ch. 12 - The table gives the initial lengths of three reds...Ch. 12 - A physical therapist gone wild has constructed the...Ch. 12 - Prob. 1PCh. 12 - An automobile with a mass of 1360 kg has 3.05 m...Ch. 12 - SSM WWWIn Fig. 12-26, a uniform sphere of mass m =...Ch. 12 - An archers bow is drawn at its midpoint until the...Ch. 12 - ILWA rope of negligible mass is stretched...Ch. 12 - A scaffold of mass 60 kg and Length 5.0 m is...Ch. 12 - A 75 kg window cleaner uses a 10 kg ladder that is...Ch. 12 - A physics Brady Bunch, whose weights in newtons...Ch. 12 - SSMA meter stick balances horizontally on a...Ch. 12 - GO The system in Fig. 12-28 is in equilibrium,...Ch. 12 - SSMFigure 12-29 shows a diver of weight 580 N...Ch. 12 - In Fig. 12-30, trying to gel his car out of mud, a...Ch. 12 - Figure 12-31 shows the anatomical structures in...Ch. 12 - In Fig. 12-32, a horizontal scaffold, of length...Ch. 12 - ILWForces F1, F2 and F3 act on the structure of...Ch. 12 - A uniform cubical crate is 0.750 m on each side...Ch. 12 - In Fig. 12-34, a uniform beam of weight 500 N and...Ch. 12 - GO In Fig. 12-35, horizontal scaffold 2, with...Ch. 12 - To crack a certain nut in a nutcracker, forces...Ch. 12 - A bowler holds a bowling ball M = 7.2 kg in the...Ch. 12 - ILWThe system in Fig. 12-38 is in equilibrium. A...Ch. 12 - GO In Fig-12-39, a 55 kg rock climber is in a...Ch. 12 - GO In Fig. 12-40, one end of a uniform beam of...Ch. 12 - GO In Fig. 12-41, a climber with a weight of 533.8...Ch. 12 - SSM WWWIn Fig. 12-42, what magnitude of constant...Ch. 12 - GO In Fig. 12-43, a climber leans out against a...Ch. 12 - GO In Fig. 12-44, a 15 kg block is held in place...Ch. 12 - GO In Fig. 12-45, suppose the length L of the...Ch. 12 - A door has a height of 2.1 m along a y axis that...Ch. 12 - GO In Fig. 12-46, a 50.0 kg uniform square sign,...Ch. 12 - GO In Fig. 12-47, a nonuniform bar is suspended at...Ch. 12 - In Fig. 12-48, the driver of a car on a horizontal...Ch. 12 - Figure 12-49a shows a vertical uniform beam of...Ch. 12 - In Fig. 12-45, a thin horizontal bar AB of...Ch. 12 - SSM WWWA cubical box is filled with sand and...Ch. 12 - Figure 12-50 shows a 70 kg climber hanging by only...Ch. 12 - GO In Fig. 12-51, a uniform plank, with a length L...Ch. 12 - In Fig, 12-52, uniform beams A and B are attached...Ch. 12 - For the stepladder shown in Fig. 12-53, sides AC...Ch. 12 - Figure 12-54a shows a horizontal uniform beam of...Ch. 12 - A crate, in the form of a cube with edge lengths...Ch. 12 - In Fig. 12-7 and the associated sample problem,...Ch. 12 - SSM ILWA horizontal aluminum rod 4.8 cm in...Ch. 12 - Figure 12-55 shows the stressstrain curve for a...Ch. 12 - In Fig. 12-56, a lead brick rests horizontally on...Ch. 12 - Figure 12-57 shows an approximate plot of stress...Ch. 12 - A tunnel of length L = 150 m, height H = 7.2 m,...Ch. 12 - Figure 12-59 shows the stress versus strain plot...Ch. 12 - GO In Fig. 12-60, a 103kg uniform log hangs by two...Ch. 12 - GO Figure 12-61 represents an insect caught at the...Ch. 12 - GO Figure 12-62 is an overhead view of a rigid rod...Ch. 12 - After a fall, a 95 kg rock climber finds himself...Ch. 12 - SSMIn Fig 12-63, a rectangular slab of slate rests...Ch. 12 - A uniform ladder whose length is 5.0 m and whose...Ch. 12 - SSM In Fig. 12-64, block A mass 10 kg is in...Ch. 12 - Figure 12-65a shows a uniform ramp between two...Ch. 12 - GO In Fig. 12-66, a 10 kg sphere is supported on a...Ch. 12 - In Fig. 12-67a, a uniform 40.0 kg beam is centered...Ch. 12 - SSM In Fig. 12-68, an 817 kg construction bucket...Ch. 12 - In Fig. 12-69, a package of mass m hangs from a...Ch. 12 - ILWThe force F in Fig. 12-70 keeps the 6.40 kg...Ch. 12 - A mine elevator is supported by a single steel...Ch. 12 - Four bricks of length L, identical and uniform,...Ch. 12 - Prob. 64PCh. 12 - In Fig. 12-73, a uniform beam with a weight of 60...Ch. 12 - A uniform beam is 5.0 m long and has a mass of 53...Ch. 12 - A solid copper cube has an edge length of 85.5 cm....Ch. 12 - A construction worker attempts to lift a uniform...Ch. 12 - SSM In Fig. 12-76, a uniform rod of mass m is...Ch. 12 - A 73 kg man stands on a level bridge of length L....Ch. 12 - SSMA uniform cube of side length 8.0 cm rests cm a...Ch. 12 - The system in Fig. 12-77 is in equilibrium. The...Ch. 12 - SSMA uniform ladder is 10 m long and weighs 200 N....Ch. 12 - A pan balance is made up of a rigid, massless rod...Ch. 12 - The rigid square frame in Fig. 12-79 consists of...Ch. 12 - A gymnast with mass 46.0 stands on the end of a...Ch. 12 - Figure 12-81 shows a 300 kg cylinder that is...Ch. 12 - In Fig. 12-82, a uniform beam of length 12.0 m is...Ch. 12 - Four bricks of length L, identical and uniform,...Ch. 12 - A cylindrical aluminum rod, with an initial length...Ch. 12 - Prob. 81PCh. 12 - If the square beam in Fig. 12-6a and the...Ch. 12 - Figure 12-84 shows a stationary arrangement of two...Ch. 12 - A makeshift swing is constructed by makings loop...Ch. 12 - Figure 12-85a shows details of a finger in the...Ch. 12 - A trap door in a ceiling is 0.91 m square, has a...Ch. 12 - A particle is acted on by forces given, in...Ch. 12 - The leaning Tower of Pisa is 59.1 m high and 7.44...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answer clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desig...
Cosmic Perspective Fundamentals
The following data were obtained from a disk-diffusion test. Antibiotic Zone of Inhibition A 15 mm B 0 mm c 7 m...
Microbiology: An Introduction
3. What are serous membranes, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
How are photosynthesis and respiration related to each other?
Microbiology: Principles and Explorations
Imagine that you are standing on a beach but cannot swim. Your friend encourages you to walk into the surf zone...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A uniform cube of side length 5.7 cm rests on a horizontal floor. The coefficient of static friction between cube and floor is u. A horizontal pull P is applied perpendicular to one of the vertical faces of the cube, at a distance 5.1 cm above the floor on the vertical midline of the cube face. The magnitude of P is gradually increased. (a) If μ is less than what value will the cube eventually begin to slide? (b) If u is greater than what value will the cube eventually begin to tip? (Hint: At the onset of tipping, where is the normal force located?) (a) Number i (b) Number i Units Unitsarrow_forwardThe masses of the box at right is 30 kg. The coefficient of static friction between each box and the inclined surface is us = 0.2. If a = 40°, determine:a) The minimum value of the mass at the left to maintain equilibrium.b) The maximum value of the mass at the left to maintain equilibrium.arrow_forward3 SSM WWW A bedroom bureau with a mass of 45 kg, includ- ing drawers and clothing, rests on the floor. (a) If the coefficient of static friction between the bureau and the floor is 0.45, what is the magnitude of the minimum horizontal force that a person must ap- ply to start the bureau moving? (b) If the drawers and clothing, with 17 kg mass, are removed before the bureau is pushed, what is the new minimum magnitude?arrow_forward
- It is a sad day in Oman: 11-01-2020. The flag poles around the country are lowered. One end of horizontal flagpoles of mass 33 kg is hinged to the wall, the other side is hanging by a wire that makes angles 0 = 30° with both the flag pole and the wall. What is: (a) the tension in the wirearrow_forwardAn initially stationary box of sand is to be pulled across a floor by means of a cable in which the tension should not exceed 861 N. The coefficient of static friction between the box and the floor is 0.450. (a) What should be the angle between the cable and the horizontal in order to pull the greatest possible amount of sand, and (b) what is the weight of the sand and box in that situation? (a) Number Units (b) Number i Unitsarrow_forwardAF = 1 kN force is applied on steel pipes in -z axis direction. According to connection coordinates of the pipes AD, BD, and CD, please find the forces that are coming to each pipe. 1 kN T100 AD, CD (Coordinates in mm) BD A(230,-380,0) ċ(-449, 240, a) 8(500, 400, 0) ANSWERS T, (N) Tep(V)arrow_forward
- 9-13arrow_forwardParagraf Stiller AF -5 KN force is applied on steel pipes in -z axis direction. According to connection coordinates of the pipes AD, BD, and CD, please find the forces that are coming to each pipe. F=5 kN D(0,,1100) AD CD (Coord inates in mm) BD č(-440, 240, ) B(500, 400, 0) ANSWERS Tp(V) T(EN) (10 pts) (10pts) (10 pts) F8 F9 F10 F11 F12 Insert 10arrow_forward*23. ssm A uniform board is leaning against a smooth vertical wall. The board is at an angle 0 above the horizontal ground. The coefficient of static friction between the ground and the lower end of the board is 0.650. Find the smallest value for the angle 0, such that the lower end of the board does not slide along the ground.arrow_forward
- A block of mass m is pressed against a wall by a force of magnitude P applied at angle 0 below the horizontal. The coefficient of static friction between wall and block is µ. What minimum value of P will maintain the block in equilibrium? mg(1– 4) B) m mg A) cos 0 - u sin 0 sin 0 mg C) sin θ+ μcos 0 m D) (1+ u tan 0)arrow_forwardA 1.2-m plank of mass 3 kg rests on two joists. Knowing that the coefficient of static friction between the plank and the joists is 0.30,determine the magnitude of the horizontal force required to move the plank when (a) a= 750 mm, (b) a = 900 mm.arrow_forward9-11arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY