Concept explainers
Figure 12-65a show’s a uniform ramp between two buildings that allows for motion between the buildings due to strong winds.At its left end, it is hinged to the building wall; at its right end, it has a roller that can roll along the building wall. There is no vertical force on the roller from the building, only a horizontal force with magnitude Fh. The horizontal distance between the buildings is D = 4.00 m. The rise of the ramp is h = 0.490 m. A man walks across the ramp from the left. Figure 12-65b gives Fh as a function of the horizontal distance x of the man from the building at the left. The scale of the Fh axis is set bya = 20 kN and b = 25 kN. What are the masses of (a) the ramp and (b) the man?
Want to see the full answer?
Check out a sample textbook solutionChapter 12 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Living By Chemistry: First Edition Textbook
Human Biology: Concepts and Current Issues (8th Edition)
Campbell Essential Biology with Physiology (5th Edition)
Brock Biology of Microorganisms (15th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
- B 60° Figure 3 L A 5. A beam AB of length 10m and negligible mass leans against a wall at an angle of 60° to the horizontal. It is held at B by a string as shown. There is no friction at either of the ends A or B. A koala of mass M = 10 kg climbs up the beam from B. If the breaking tension of the string is 40 N, find the distance reached by the koala just before the string cannot support any more weight and breaks.arrow_forwardPlease help mearrow_forwardSolve Equation (1) for R (in N) and substitute numerical values: R = Finalize The positive value for the angle 0 indicates that our estimate of the direction of R was accurate. Had we selected some other axis for the torque equation, the solution might differ in the details ---Select-- . For example, had we chosen an axis through the center of gravity of the beam, the torque equation would involve both T and R. This equation, coupled with Equations (1) and (2), however, could still be solved for the unknowns. Try it! EXERCISE A person with weight 900 N stands d = 4.00 m away from the wall on a f = 6.00 m beam, as shown in this figure. The weight of the beam is 2,000 N. Define upward as the positive y-direction and to the right as the positive x-direction. 30° d Hint (a) Find the tension (in N) in the wire. (b) Find the horizontal component of the hinge force (in N). (Indicate the direction with the sign of your answer.) (c) Find the vertical component in (N). (Indicate the direction…arrow_forward
- One end of a uniform - 3.60-m-long rod of weight w is supported by a cable at an angle of 6-37° with the rod. The other end rests against a wall, where it is held by friction (see figure). The coefficient of static friction between the wall and the rod is,-0.460. Determine the minimum distance x from point A at which an additional weight w (the same as the weight of the rod) can be hung without causing the rod to slip at point Aarrow_forwardA 20 kg uniform ladder 2.5 meters long rests against a smooth wall at an angle of 53° with the horizontal. Calculate the forces on the ladder exerted by the floor and wall. m = 20 kg L = 2.5 m 0=53°arrow_forwardA uniform ladder 6m long weighs 225N. It leans against a smooth vertical wall, making an angel of 53° with the horizontal ground. If the coefficient of friction between the foot of the ladder and the ground is 0.34, how far up the ladder can a 650N woman climb before the ladder starts to slip?arrow_forward
- *5-36. The beam of negligible weight is supported horizontally by two springs. If the beam is horizontal and the springs are unstretched when the load is removed, determine the angle of tilt of the beam when the load is applied. В PA 600 N/m FA=1 kN/m kg= 1.5 kN/m D 3 m 3 m Prob. 5-36arrow_forwardA 25-kg ladder, 4 m long, rests on a rough floor and against a vertical wall. The ladder makes an angle of 35° with the horizontal. It starts to slip when a man weighing 75 kg has dlimbed halfway up. f= 0.20 at the wall. Ladder Wall 350 10) What is the coefficient of friction at the floor in three decimal places?arrow_forwardTen bags of topsoil, each weighing 175 N, are placed on a 2.43-m-long sheet of wood. They are stacked 0.50 m from one end of the sheet of wood, as shown in Figure 8-27. Two people lift the sheet of wood, one at each end. Ignoring the weight of the wood, how much force must each person exert?arrow_forward
- A uniform ladder 18 ft long and weighing 120 lbs rests against a smooth wall. The angle between the ladder and the ground is 70°. The coefficient of friction between the ground and the ladder is 0.25. How far up the ladder can a 180 lb man walk before the ladder slips?arrow_forward9-13arrow_forwardA uniform ladder 18 ft long and weighing 120 lbs rests against a smooth wall. The angle between the ladder and the ground is 70°. The coefficient of friction between the ground and the ladder is 0.25. How far up the ladder can a 180 lb man walk before the ladder slips?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON