Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 12.8P
Consider a 500 mm diameter pile having a length of 18 m in a clay. Given: γ = 20.0 kN/m3 and cu = 60 kN/m2.
- a. Determine the maximum allowable load (Qall) with FS = 3. Use the α method and Table 12.11 for determining the skin friction and Eq. (12.20) for determining the point load. Allow a factor of safety of 3.
- b. What percentage of the ultimate load is being carried by the pile shaft? Is it a friction pile?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A concrete pile 20 m long having a cross section of 0.46 m × 0.46 m is fully
embedded in a saturated clay layer. For the clay, given: Yat = 18 kN/m², = 0, and
Cu = 80 kN/m?. Determine the allowable load that the pile can carry (FS = 3). Use
%3D
the A method to estimate the skin resistance.
A concrete pile 50 ft long having a cross section of 15 in. x 15 in. is fully embedded in a saturated clay layer for which γsat = 121 lb/ft3, Φ = 0, and cu = 1600 lb/ft2. Determine the allowable load that the pile can carry. (Let FS = 3.) Use the a method Eq. (9.59) and Table 9.10 to estimate the skin friction and Vesic’s method for point load estimation.
Please answer 11.7
Chapter 12 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 12 - Prob. 12.1PCh. 12 - A 20 m long concrete pile is shown in Figure...Ch. 12 - A 500 mm diameter are 20 m long concrete pile is...Ch. 12 - Redo Problem 12.3 using Coyle and Castellos...Ch. 12 - A 400 mm 400 mm square precast concrete pile of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - A driven closed-ended pile, circular in cross...Ch. 12 - Consider a 500 mm diameter pile having a length of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - Prob. 12.10P
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - A concrete pile 16 in. 16 in. in cross section is...Ch. 12 - Prob. 12.14PCh. 12 - Solve Problem 12.13 using Eqs. (12.59) and...Ch. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - A steel pile (H-section; HP 310 125; see Table...Ch. 12 - Prob. 12.19PCh. 12 - A 600 mm diameter and 25 m long driven concrete...Ch. 12 - Redo Problem 12.20 using Vesics method, assuming...Ch. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Solve Problem 12.23 using the method of Broms....Ch. 12 - Prob. 12.25PCh. 12 - Solve Problem 12.25 using the modified EN formula....Ch. 12 - Solve Problem 12.25 using the modified Danish...Ch. 12 - Prob. 12.28PCh. 12 - Prob. 12.29PCh. 12 - Figure 12.49a shows a pile. Let L = 15 m, D (pile...Ch. 12 - Redo Problem 12.30 assuming that the water table...Ch. 12 - Refer to Figure 12.49b. Let L = 18 m, fill = 17...Ch. 12 - Estimate the group efficiency of a 4 6 pile...Ch. 12 - The plan of a group pile is shown in Figure...Ch. 12 - Prob. 12.35PCh. 12 - Figure P12.36 shows a 3 5 pile group consisting...Ch. 12 - Prob. 12.37P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Qp by a. Meyerhofs method b. Vesics method c. Coyle and Castellos method Use m = 600 in Eq. (12.28).arrow_forwardPlease answer 11.9arrow_forwardRefer to the pile shown in Figure P 9.1. Estimate the side resistance Qs bya. Using Eqs. (9.40) through (9.42). Use K = 1.5 and ẟ' = 0.6 Φ'b. Coyle and Castello’s method [Eq. (9.44)]arrow_forward
- 7. If a 45 cm diameter pipe pile is driven into clayey soil to a depth of 12 m. (a) what would the allowable load capacity (Q) be? The water table is 2 m below the ground surface and the soil profile consists of two clay layers (refer to the figure below). Use the ß method to calculate skin friction and the R=30° for all clay layers. (b) Explain how you selected FS value you use. 12 m 9m 2 m 45 cm Y = 18.5kN/m²³ C= 30kN/m² Ysat = 19kN/m³ Cu = 30kN/m² Ysat = 20kN/m² S = 60kN/m²arrow_forward7. If a 45 cm diameter pipe pile is driven into clayey soil to a depth of 12 m. (a) what would the allowable load capacity (Q) be? The water table is 2 m below the ground surface and the soil profile consists of two clay layers (refer to the figure below). Use the ß method to calculate skin friction and the R=30° for all clay layers. (b) Explain how you selected FS value you use. 12 m ▶ 9m 2m 45 cm Y = 18.5kN/m³ = 30kN/m² Ysat = 19kN/m³ C₂ = 30kN/m² Ysat = 20kN/m² S = 60kN/m²arrow_forwardA driven closed-ended pile, circular in cross section, is shown in Figure 1. Calculate the following. a. The ultimate point load using Meyerhof’s procedure. b. The ultimate point load using Vesic’s procedure. Take Irr = 50.arrow_forward
- A 30 m long concrete pile is 305 mm times 350 mm in cross section and is fully embedded in a sand deposit. Using Broms' method, calculate the allowable lateral load Q_g (take FS = 2) at the ground level. Assume the pile is flexible and restrained. Let the soil unit weight, gamma = 16 kN/m^3, the soil friction angle, Phi' = 30^degree; and the yield stress of the pile material, F_y = 21 MPa,arrow_forward11.22 A concrete pile measuring 0.406 m X 0.406 m in cross section is 18.3 m long. It is fully embedded in a layer of sand. The following is an approximation of the me- chanical cone penetration resistance (q.) and the friction ratio (F) for the sand layer. Estimate the allowable bearing capacity of the pile. Use FS = 4. Depth below ground surface (m) 9. (kN/m²) F, (%) 0-6.1 2803 2.3 6.1-13.7 3747 2.7 13.7-19.8 8055 2.8arrow_forwardConsider a drilled, rough concrete pile with diameter B = 1m and length D = 10m embedded in a site underlain by a 5m thick layer of sand with fiction angle = 41 degrees and Ko = 0.5 that lies over an 8m thick layer of clay with fiction angle = 36 degrees, Ko = 0.38, and Su = 70 kPa. Use the Kulhawy et al method. A. Determine the long term end bearing capacity of the pile. B. Determine the long term capacity of the pile. OCR = 1 Kulhawy et al (1983). This method considers the strength and the stiffness of the soil in 1 This is captured by the rigidity index, computed first, as follows (Vesic 1977): = Es 2(1+v)(o'zDtand')arrow_forward
- Q1: Determine the allowable load capacity for the driven pile of 0.6 m diameter embedded in a layered soil as shown in the figure below, use F.S 2.0 , K, = 1.5 and tand =0.5? ELEV. 110 N.C.C W.T ELEV. 108 Cu =70 kPa Y = 17 kN/m3 a = 1, yw = 10 kN/m? ELEV. 102 O.C.C, Cu 180 kPa, y = 20 kN/m³ a = 0.45 ELEV. 98 Sandy Layer Yt = 19 kN/m3 Ø = 32° Nq = 23.18 ELEV. 90arrow_forwardRefer to the pipe pile in saturated clay shown in Figure 1. For the pile, Calculate the skin resistance (Qs) by (1) the α method, (2) the λ method, and (3) the β method. For the β method, use ϕ’R= 300 for all clay layers. The top 10 m of clay is normally consolidated.The bottom clay layer has an OCR = 2. (Note: diameter of pile = 457 mm) Using the results of Exercise 10, estimate the allowable pile capacity (Qall). Use FS = 4arrow_forwardnote: please expert answer only the letter d in the problemarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Concrete Slab Calculations 006; Author: Jerry Howard;https://www.youtube.com/watch?v=R19jILyBxio;License: Standard Youtube License