Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12.3P
A 500 mm diameter are 20 m long concrete pile is driven into a sand where γ = 18.5 kN/m3 and ϕ′ = 32º. Assuming δ′ = 0.7ϕ′ and K = 1.5 Ko, determine the load-carrying capacity of the pile, with a factor of safety of 3. Use Meyerhof’s method [Eq. (12.18)] for computing the point load-carrying capacity Qp, and Eqs. (12.42) and (12.43) for computing the load-carrying capacity of the pile shaft Qs.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
I need a solution to the problem - 12.4
Please answer 11.22
A 20-m-long concrete pile is shown in Figure P9.1. Estimate the ultimate point load
Q, by
a. Meyerhof's method
b. Vesic's method
c. Coyle and Castello's method
Use m = 600 in Eq. (9.26).
9.1
Concrete pile
460 mm x 460 mm
Loose sand
di = 30°
y = 18.6 kN/m3
20 m
Dense sand
d'2 = 42°
y = 18.5 kN/m3
Figure P9.1
Chapter 12 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 12 - Prob. 12.1PCh. 12 - A 20 m long concrete pile is shown in Figure...Ch. 12 - A 500 mm diameter are 20 m long concrete pile is...Ch. 12 - Redo Problem 12.3 using Coyle and Castellos...Ch. 12 - A 400 mm 400 mm square precast concrete pile of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - A driven closed-ended pile, circular in cross...Ch. 12 - Consider a 500 mm diameter pile having a length of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - Prob. 12.10P
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - A concrete pile 16 in. 16 in. in cross section is...Ch. 12 - Prob. 12.14PCh. 12 - Solve Problem 12.13 using Eqs. (12.59) and...Ch. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - A steel pile (H-section; HP 310 125; see Table...Ch. 12 - Prob. 12.19PCh. 12 - A 600 mm diameter and 25 m long driven concrete...Ch. 12 - Redo Problem 12.20 using Vesics method, assuming...Ch. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Solve Problem 12.23 using the method of Broms....Ch. 12 - Prob. 12.25PCh. 12 - Solve Problem 12.25 using the modified EN formula....Ch. 12 - Solve Problem 12.25 using the modified Danish...Ch. 12 - Prob. 12.28PCh. 12 - Prob. 12.29PCh. 12 - Figure 12.49a shows a pile. Let L = 15 m, D (pile...Ch. 12 - Redo Problem 12.30 assuming that the water table...Ch. 12 - Refer to Figure 12.49b. Let L = 18 m, fill = 17...Ch. 12 - Estimate the group efficiency of a 4 6 pile...Ch. 12 - The plan of a group pile is shown in Figure...Ch. 12 - Prob. 12.35PCh. 12 - Figure P12.36 shows a 3 5 pile group consisting...Ch. 12 - Prob. 12.37P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 12.2 A 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Q, by a. Meyerhof's method b. Vesic's method c. Coyle and Castello's method Use m = 600 in Eq. (12.28). Concrete pile 460 mm X 460 mm Loose sand di = 30° y = 18.6 kN/m3 20 m F Dense sand $2 = 42° y = 18.5 kN/marrow_forwardi need the answer quicklyarrow_forwardPlease answer 11.7arrow_forward
- 11.22 A concrete pile measuring 0.406 m X 0.406 m in cross section is 18.3 m long. It is fully embedded in a layer of sand. The following is an approximation of the me- chanical cone penetration resistance (q.) and the friction ratio (F) for the sand layer. Estimate the allowable bearing capacity of the pile. Use FS = 4. Depth below ground surface (m) 9. (kN/m²) F, (%) 0-6.1 2803 2.3 6.1-13.7 3747 2.7 13.7-19.8 8055 2.8arrow_forwardA concrete pile 20 m long having a cross section of 0.46 m × 0.46 m is fully embedded in a saturated clay layer. For the clay, given: Yat = 18 kN/m², = 0, and Cu = 80 kN/m?. Determine the allowable load that the pile can carry (FS = 3). Use %3D the A method to estimate the skin resistance.arrow_forwardA concrete pile 20 m long with a cross section of 400 mm x 400 mm is fully embedded in a saturated clay layer. The clay has the following properties: γsat = 18.5 kN/m3, ϕ= 0 and cu = 70 kPa. Assume that the water table rises to the tip of the pile. Determine the allowable load that the pile can carry (FS=3). Use the α and λ method to estimate the skin resistance.arrow_forward
- A 400 mm x 400 mm square precast concrete pile of 15 m length is driven into a sand where γ = 18.0 kN/m3 and Φ' = 33°. Assume δ' = 0.7 and K=1.4Ko determine the load-carrying capacity of the pile with a FS=3. Using Meyerhof's method, Qp=Apq'Nq*≤Apql for computing the point load-carrying capacity Qp, Equations, L'≈15D and f=Kσ'otanδ' for computing the load-carrying capacity of the pile shaft Qs.arrow_forward2. Consider a group of 450 mm x 450 mm reinforced concrete piles were driven into thick loose sand layer with the average unit weight and internal friction angle of 16 kN/m3 and 30°, respectively. Estimate the group pile capacity with the arrangement as shown in Figure Q2 if the length of pile embedment is 30 m assuming ground water table is far below the ground surface. Use 8 = 0.80 and K = 1.5Ko. 3B 3B 3B 1 3 3.5B b 'P 9. 10 11 a 3.5B 2 4 1.5B 1.5B 1.5B 1.5B 1.5B 1.5B Figure Q2arrow_forwardA 450 mm x 450 mm concrete pile 20.0 m long is driven into sand deposits with y = 17 kN/m³ and = 30°. Find the ultimate load i.e. point load Qp by Meyerhoff's method and Janbu method. Meyerhoff's N = 55, Atmospheric pressure = 100 kN/m², Janbu's N = 18.4arrow_forward
- In Problem 18.4, find the maximum bending moment in the sheet pile and determine the required section modulus, assuming an allowable stress of 190 MN/m2. 18.4 Refer to Figure 18.13. Given L1 = 1.5 m, L2 = 3 m; for the sand, =33, =16.5kN/m3, sat=19.0kN/m3; and, for the clay, c=50kN/m2, =0, sat=20kN/m3. Determine the depth of sheet pile required, allowing for a 50% increase from the theoretical estimate.arrow_forwardA 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Qp by a. Meyerhofs method b. Vesics method c. Coyle and Castellos method Use m = 600 in Eq. (12.28).arrow_forwardRefer to the pile shown in Figure P 9.1. Estimate the side resistance Qs bya. Using Eqs. (9.40) through (9.42). Use K = 1.5 and ẟ' = 0.6 Φ'b. Coyle and Castello’s method [Eq. (9.44)]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
How to build angle braces; Author: Country Living With The Harnish's;https://www.youtube.com/watch?v=3cKselS6rxY;License: Standard Youtube License