Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 12.29P
To determine
Find the average penetration per hammer blow S
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A concrete bored pile has a diameter of 800 mm as given in the figure
below. Calculate the ultimate load carrying capacity of the pile.
-0.8-
Clay
Cu = 60 kN/m²
Y = 18 kN/m³
%3D
4m
G.W.T
Sand
6m
$ = 30°
Y = 20 kN/m³
Clay
Cu = 100 kN/m²
Y = 20 kN/m³
5m
A hammer pile driver has a hammer with mass of 700 kilograms. It falls onto the top of a 140-kilogram pile from a 150 centimeter height, causing it to be buried 0.120 meters into the ground. If the impact is perfectly elastic, that is, e = 0, what is the average penetration resistance of the ground?
Problem 1. A 12-m-long 356-mm-diameter concrete pile is shown in Figure below. Estimate the
allowable capacity, Qaul, of the pile. Use K = 1.3 Ko, 8' = 0.8 Ø' and a factor of safety equal to
3.
12 m
Concrete pile
356 mm
Loose sand
$₁ = 30°
y = 17.5 kN/m³
Dense sand
$2 = 42°
y = 18.5 kN/m³
Chapter 12 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 12 - Prob. 12.1PCh. 12 - A 20 m long concrete pile is shown in Figure...Ch. 12 - A 500 mm diameter are 20 m long concrete pile is...Ch. 12 - Redo Problem 12.3 using Coyle and Castellos...Ch. 12 - A 400 mm 400 mm square precast concrete pile of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - A driven closed-ended pile, circular in cross...Ch. 12 - Consider a 500 mm diameter pile having a length of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - Prob. 12.10P
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - A concrete pile 16 in. 16 in. in cross section is...Ch. 12 - Prob. 12.14PCh. 12 - Solve Problem 12.13 using Eqs. (12.59) and...Ch. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - A steel pile (H-section; HP 310 125; see Table...Ch. 12 - Prob. 12.19PCh. 12 - A 600 mm diameter and 25 m long driven concrete...Ch. 12 - Redo Problem 12.20 using Vesics method, assuming...Ch. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Solve Problem 12.23 using the method of Broms....Ch. 12 - Prob. 12.25PCh. 12 - Solve Problem 12.25 using the modified EN formula....Ch. 12 - Solve Problem 12.25 using the modified Danish...Ch. 12 - Prob. 12.28PCh. 12 - Prob. 12.29PCh. 12 - Figure 12.49a shows a pile. Let L = 15 m, D (pile...Ch. 12 - Redo Problem 12.30 assuming that the water table...Ch. 12 - Refer to Figure 12.49b. Let L = 18 m, fill = 17...Ch. 12 - Estimate the group efficiency of a 4 6 pile...Ch. 12 - The plan of a group pile is shown in Figure...Ch. 12 - Prob. 12.35PCh. 12 - Figure P12.36 shows a 3 5 pile group consisting...Ch. 12 - Prob. 12.37P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forwardA concrete pile 20 m long having a cross section of 0.46 m × 0.46 m is fully embedded in a saturated clay layer. For the clay, given: Yat = 18 kN/m², = 0, and Cu = 80 kN/m?. Determine the allowable load that the pile can carry (FS = 3). Use %3D the A method to estimate the skin resistance.arrow_forwardThe wooden pile shown in the figure has a diameter of 100 mm and is subjected to a load of P = 70 kN. Along the length of the pile and around its perimeter, soil supplies a constant frictional resistance of w = 4.99 kN/m. The length of the pile is L = 4.2 m and its elastic modulus is E = 8.7 GPa.Calculate(a) the force FB needed at the base of the pile for equilibrium.(b) the magnitude of the downward displacement at A relative to B.arrow_forward
- The wooden pile shown in the figure has a diameter of 105 mm and is subjected to a load of P = 70 kN. Along the length of the pile and around its perimeter, soil supplies a constant frictional resistance of w = 3.85 kN/m. The length of the pile is L = 4.0 m and its elastic modulus is E= 12.9 GPa. Calculate (a) the force Fg needed at the base of the pile for equilibrium. (b) the magnitude of the downward displacement at A relative to B. y L Answers: (a) FB = (b) UA= i i B FB KN mmarrow_forwardThe wooden pile shown in the figure has a diameter of 95 mm and is subjected to a load of P = 80 kN. Along the length of the pile and around its perimeter, soil supplies a constant frictional resistance of w = 2.90 kN/m. The length of the pile is L = 5.6 m and its elastic modulus is E = 8.6 GPa.Calculate(a) the force FB needed at the base of the pile for equilibrium.(b) the magnitude of the downward displacement at A relative to B.arrow_forwardAnswer both partsarrow_forward
- A driven closed-ended pile, circular in cross section, is shown in Figure P 9.4.Calculate the following.a. The ultimate point load using Meyerhof’s procedure.b. The ultimate point load using Vesic’s procedure. Take Irr = 50.c. An approximate ultimate point load on the basis of parts (a) and (b).d. The ultimate frictional resistance Qs. [Use Eqs. (9.40 (L' ≈ 15 D)) through (9.42), and take K = 1.4 and ẟ' = 0.6 Φ'.]e. The allowable load of the pile (use FS = 4).arrow_forwardsvarrow_forwardI need detailed explanation solving this exercise from Foundation Engineering, step by step please.arrow_forward
- Please answer 11.9arrow_forward1%9E lI. bartleby.com/solution-answ = bartleby E Q&A Sign in Engineering / Civil Engineering / Prin... / A 20 m long concre... : A 20 m long concrete pile is shown in F... A 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Q, by a. Meyerhof's method b. Vesic's method c. Coyle and Castello's method Use m= 600 in Eq. (12.28). Concrete pile 460 mm x 460 mm Loose sand d - 30 y- 18.6 kN/m 20 m Dense sand d2- 42 y- 18.5 kN/m العربية الإنجليزية IIarrow_forwardA square concrete pile of 10 m length is driven into a deep layer of uniform homogeneous clay. The average unconfined compressive strength of the clay, determined through laboratory tests on undisturbed samples extracted from the clay layer, is 100 kPa. If the ultimate compressive load capacity of the driven pile is 632 kN, the required width of the pile is mm. (in integer) (Bearing capacity factor Nc = 9; adhesion factor a = 0.7)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning