Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 12, Problem 12.21P
Redo Problem 12.20 using Vesic’s method, assuming that the skin friction is distributed uniformly along the shaft.
12.20 A 600 mm diameter and 25 m long driven concrete pile carries a column load of 1200 kN. It is estimated that the shaft carries 900 kN and the point carries 300 kN. Determine the settlement of the pile head using the Poulos and Davis method with the following data:
Es = 25 MN/m2, Ep = 30,000 MN/m2, and μs = 0.2
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 20-m-long concrete pile is shown in Figure P9.1. Estimate the ultimate point load
Q, by
a. Meyerhof's method
b. Vesic's method
c. Coyle and Castello's method
Use m = 600 in Eq. (9.26).
9.1
Concrete pile
460 mm x 460 mm
Loose sand
di = 30°
y = 18.6 kN/m3
20 m
Dense sand
d'2 = 42°
y = 18.5 kN/m3
Figure P9.1
12.2 A 20 m long concrete pile is shown in Figure P12.2.
Estimate the ultimate point load Q, by
a. Meyerhof's method
b. Vesic's method
c. Coyle and Castello's method
Use m = 600 in Eq. (12.28).
Concrete pile
460 mm X 460 mm
Loose sand
di = 30°
y = 18.6 kN/m3
20 m
F
Dense sand
$2 = 42°
y = 18.5 kN/m
Please answer 11.15
(Answer)
32.5kN
Chapter 12 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 12 - Prob. 12.1PCh. 12 - A 20 m long concrete pile is shown in Figure...Ch. 12 - A 500 mm diameter are 20 m long concrete pile is...Ch. 12 - Redo Problem 12.3 using Coyle and Castellos...Ch. 12 - A 400 mm 400 mm square precast concrete pile of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - A driven closed-ended pile, circular in cross...Ch. 12 - Consider a 500 mm diameter pile having a length of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - Prob. 12.10P
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - A concrete pile 16 in. 16 in. in cross section is...Ch. 12 - Prob. 12.14PCh. 12 - Solve Problem 12.13 using Eqs. (12.59) and...Ch. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - A steel pile (H-section; HP 310 125; see Table...Ch. 12 - Prob. 12.19PCh. 12 - A 600 mm diameter and 25 m long driven concrete...Ch. 12 - Redo Problem 12.20 using Vesics method, assuming...Ch. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Solve Problem 12.23 using the method of Broms....Ch. 12 - Prob. 12.25PCh. 12 - Solve Problem 12.25 using the modified EN formula....Ch. 12 - Solve Problem 12.25 using the modified Danish...Ch. 12 - Prob. 12.28PCh. 12 - Prob. 12.29PCh. 12 - Figure 12.49a shows a pile. Let L = 15 m, D (pile...Ch. 12 - Redo Problem 12.30 assuming that the water table...Ch. 12 - Refer to Figure 12.49b. Let L = 18 m, fill = 17...Ch. 12 - Estimate the group efficiency of a 4 6 pile...Ch. 12 - The plan of a group pile is shown in Figure...Ch. 12 - Prob. 12.35PCh. 12 - Figure P12.36 shows a 3 5 pile group consisting...Ch. 12 - Prob. 12.37P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forwardA 450 mm x 450 mm concrete pile 20.0 m long is driven into sand deposits with y = 17 kN/m³ and = 30°. Find the ultimate load i.e. point load Qp by Meyerhoff's method and Janbu method. Meyerhoff's N = 55, Atmospheric pressure = 100 kN/m², Janbu's N = 18.4arrow_forward12.10 A concrete pile 15.24 m long having a cross section of 406 mm × 406 mm is fully embedded in a saturated clay layer for which Ysat = 19.02 kN/m³, p = 0, and c₂ = 76.7 kN/m². Determine the allowable load that the pile can carry. (Let FS = 3.) Use the a method Eq. (12.61) and Table 12.11 to estimate the skin friction and Vesic's method for point load estimation.arrow_forward
- Please answer 11.22arrow_forwardExample (3): A site consist of two layers of clay. The upper layer is 8m- thick and has an undrained shear strength of 80 kN/m². The lower layer is a thick layer which has an undrained shear strength of 120 kN/m². Assume • Top 1m of pile doesn't support load. • FS 1.5 and FS₁=3 = (A) Estimate the working load of the pie with the following: D=1.5m, Ds=4.5 m, L=27m Bell length is 3m. (B)Determine the length of 600mm- diameter of driven pile to support a working load of 1200 kN.arrow_forwardRefer to the pile shown in Figure P 9.1. Estimate the side resistance Qs bya. Using Eqs. (9.40) through (9.42). Use K = 1.5 and ẟ' = 0.6 Φ'b. Coyle and Castello’s method [Eq. (9.44)]arrow_forward
- A driven closed-ended pile, circular in cross section, is shown in Figure 1. Calculate the following. a. The ultimate point load using Meyerhof’s procedure. b. The ultimate point load using Vesic’s procedure. Take Irr = 50.arrow_forwardRefer to Figure 18.26b. Let L = 15.24 m, fill = 17.29 kN/m3, sat(clay) = 19.49 kN/m3, clay = 20, Hf = 3.05 m, and D = 0.406 m. The water table coincides with the top of the clay layer. Determine the total downward drag on the pile. Assume that = 0.6 clay. FIG. 18.26 Negative skin frictionarrow_forwardIn Problem 18.4, find the maximum bending moment in the sheet pile and determine the required section modulus, assuming an allowable stress of 190 MN/m2. 18.4 Refer to Figure 18.13. Given L1 = 1.5 m, L2 = 3 m; for the sand, =33, =16.5kN/m3, sat=19.0kN/m3; and, for the clay, c=50kN/m2, =0, sat=20kN/m3. Determine the depth of sheet pile required, allowing for a 50% increase from the theoretical estimate.arrow_forward
- Consider a drilled, rough concrete pile with diameter B = 1m and length D = 10m embedded in a site underlain by a 5m thick layer of sand with fiction angle = 41 degrees and Ko = 0.5 that lies over an 8m thick layer of clay with fiction angle = 36 degrees, Ko = 0.38, and Su = 70 kPa. Use the Kulhawy et al method. A. Determine the long term end bearing capacity of the pile. B. Determine the long term capacity of the pile. OCR = 1 Kulhawy et al (1983). This method considers the strength and the stiffness of the soil in 1 This is captured by the rigidity index, computed first, as follows (Vesic 1977): = Es 2(1+v)(o'zDtand')arrow_forwardA group pile in clay is shown in the figure below. Determine the maximum vertical load Qg be applied if the allowable consolidation settlement of the pile group is set to be 0.17 m. Use the 2:1 stress distribution method to estimate the average effective stress in the clay layer. can Qg 3 m Sand Groundwater y = 15.72 kN/m3 table Sand 3 m Ysat = 18.55 kN/m3 2.75 m X 2.75 m Group plan Normally consolidated clay Ysat = 19.18 kN/m³ 15 m 18 m eo = 1 C. = 0,8 Normally consolidated clay Ysat = 19 kN/m3 eo = 0.25, C. =1 5 m Rockarrow_forwardDetermine the primary consolidation settlement for the 20 m long pile group shown below. Soil properties by layer are given in the figure, and the clay layers are normally consolidated. Assume a 2:1 load spread starting at a depth of 2/3 of the embedment depth, L. The pile group is square and has dimensions 2.6 m by 2.6 m in plan view. The groundwater table is 1 m below the ground surface. = 4000 kN 1 m Sandy soil Y =18.5 kN/m³ Q'=330 V W.T. 7 m -Group.. piles Clay 1 Y =17.2 kN/m3 e=0.83 C= 0.23 L= 20 m Ax B = 2.6 m x 14 m 2.6 m Clay 2 Y =17.5 kN/m3 e,=0.78 C=0.22. 8 m Clay 3 Y =18.0 kN/m? eo=0.76 C=0.20 12 m Rockarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
How to build angle braces; Author: Country Living With The Harnish's;https://www.youtube.com/watch?v=3cKselS6rxY;License: Standard Youtube License