Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12.6P
Determine the maximum load that can be allowed on a 450 mm diameter driven pile shown in Figure P12.6, allowing a factor of safety of 3. Use K = 1.5 Ko and δ′ = 0.65ϕ′ in computing the shaft load. Use Meyerhof’s method for computing the point load.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 20-m-long concrete pile is shown in Figure P9.1. Estimate the ultimate point load Qp bya. Meyerhof’s methodb. Vesic’s methodc. Coyle and Castello’s methodUse m = 600 in Eq. (9.26).
A driven closed-ended pile, circular in cross section, is shown in Figure P9.4.
Calculate the following.
a. The ultimate point load using Meyerhof's procedure.
d. The ultimate frictional resistance Q,. [Use Eqs. (9.40) through (9.42), and take
K = 1.4 and 8' = 0.64'.]
e. The allowable load of the pile (use FS = 4).
Y - 15.7 kN/m
= 32
Groundwater
table
Yu - 18.2 kN/m³
d= 32
Yu - 19.2 kN/m³
= 40
15 m
381 mm
Figure P9.4
A 20-m-long concrete pile is shown in Figure P9.1. Estimate the ultimate point load
Q, by
a. Meyerhof's method
b. Vesic's method
c. Coyle and Castello's method
Use m = 600 in Eq. (9.26).
9.1
Concrete pile
460 mm x 460 mm
Loose sand
di = 30°
y = 18.6 kN/m3
20 m
Dense sand
d'2 = 42°
y = 18.5 kN/m3
Figure P9.1
Chapter 12 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 12 - Prob. 12.1PCh. 12 - A 20 m long concrete pile is shown in Figure...Ch. 12 - A 500 mm diameter are 20 m long concrete pile is...Ch. 12 - Redo Problem 12.3 using Coyle and Castellos...Ch. 12 - A 400 mm 400 mm square precast concrete pile of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - A driven closed-ended pile, circular in cross...Ch. 12 - Consider a 500 mm diameter pile having a length of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - Prob. 12.10P
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - A concrete pile 16 in. 16 in. in cross section is...Ch. 12 - Prob. 12.14PCh. 12 - Solve Problem 12.13 using Eqs. (12.59) and...Ch. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - A steel pile (H-section; HP 310 125; see Table...Ch. 12 - Prob. 12.19PCh. 12 - A 600 mm diameter and 25 m long driven concrete...Ch. 12 - Redo Problem 12.20 using Vesics method, assuming...Ch. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Solve Problem 12.23 using the method of Broms....Ch. 12 - Prob. 12.25PCh. 12 - Solve Problem 12.25 using the modified EN formula....Ch. 12 - Solve Problem 12.25 using the modified Danish...Ch. 12 - Prob. 12.28PCh. 12 - Prob. 12.29PCh. 12 - Figure 12.49a shows a pile. Let L = 15 m, D (pile...Ch. 12 - Redo Problem 12.30 assuming that the water table...Ch. 12 - Refer to Figure 12.49b. Let L = 18 m, fill = 17...Ch. 12 - Estimate the group efficiency of a 4 6 pile...Ch. 12 - The plan of a group pile is shown in Figure...Ch. 12 - Prob. 12.35PCh. 12 - Figure P12.36 shows a 3 5 pile group consisting...Ch. 12 - Prob. 12.37P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forward12.2 A 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Q, by a. Meyerhof's method b. Vesic's method c. Coyle and Castello's method Use m = 600 in Eq. (12.28). Concrete pile 460 mm X 460 mm Loose sand di = 30° y = 18.6 kN/m3 20 m F Dense sand $2 = 42° y = 18.5 kN/marrow_forwardA concrete pile 20 m long with a cross section of 400 mm x 400 mm is fully embedded in a saturated clay layer. The clay has the following properties: γsat = 18.5 kN/m3, ϕ= 0 and cu = 70 kPa. Assume that the water table rises to the tip of the pile. Determine the allowable load that the pile can carry (FS=3). Use the α and λ method to estimate the skin resistance.arrow_forward
- The section of a 4 x 4 group pile in a layered saturated clay is shown in Figure P 9.29. The piles are square in cross section (356 mm x 356 mm). The center-to-center spacing (d) of the piles is 1 m. Determine the allowable load bearing capacity of the pile group. Use FS = 3 and Table 9.10.arrow_forwardA driven closed-ended pile, circular in cross section, is shown in Figure P 9.4.Calculate the following.a. The ultimate point load using Meyerhof’s procedure.b. The ultimate point load using Vesic’s procedure. Take Irr = 50.c. An approximate ultimate point load on the basis of parts (a) and (b).d. The ultimate frictional resistance Qs. [Use Eqs. (9.40 (L' ≈ 15 D)) through (9.42), and take K = 1.4 and ẟ' = 0.6 Φ'.]e. The allowable load of the pile (use FS = 4).arrow_forwardA concrete pile 50 ft long having a cross section of 15 in. x 15 in. is fully embedded in a saturated clay layer for which γsat = 121 lb/ft3, Φ = 0, and cu = 1600 lb/ft2. Determine the allowable load that the pile can carry. (Let FS = 3.) Use the a method Eq. (9.59) and Table 9.10 to estimate the skin friction and Vesic’s method for point load estimation.arrow_forward
- A concrete pile 20 m long having a cross section of 0.46 m × 0.46 m is fully embedded in a saturated clay layer. For the clay, given: Yat = 18 kN/m², = 0, and Cu = 80 kN/m?. Determine the allowable load that the pile can carry (FS = 3). Use %3D the A method to estimate the skin resistance.arrow_forwardPlease answer a and c onlyarrow_forward7. If a 45 cm diameter pipe pile is driven into clayey soil to a depth of 12 m. (a) what would the allowable load capacity (Q) be? The water table is 2 m below the ground surface and the soil profile consists of two clay layers (refer to the figure below). Use the ß method to calculate skin friction and the R=30° for all clay layers. (b) Explain how you selected FS value you use. 12 m 9m 2 m 45 cm Y = 18.5kN/m²³ C= 30kN/m² Ysat = 19kN/m³ Cu = 30kN/m² Ysat = 20kN/m² S = 60kN/m²arrow_forward
- 7. If a 45 cm diameter pipe pile is driven into clayey soil to a depth of 12 m. (a) what would the allowable load capacity (Q) be? The water table is 2 m below the ground surface and the soil profile consists of two clay layers (refer to the figure below). Use the ß method to calculate skin friction and the R=30° for all clay layers. (b) Explain how you selected FS value you use. 12 m ▶ 9m 2m 45 cm Y = 18.5kN/m³ = 30kN/m² Ysat = 19kN/m³ C₂ = 30kN/m² Ysat = 20kN/m² S = 60kN/m²arrow_forwardA driven closed-ended pile, circular in cross section, is shown in Figure 1. Calculate the following. a. The ultimate point load using Meyerhof’s procedure. b. The ultimate point load using Vesic’s procedure. Take Irr = 50.arrow_forward114 A driven closed-ended pile, circular in cross section, is shown in Figure P11.4. Calculate the following: a. The ultimate point load using Meyerhof's procedure. b. The ultimate point load using Vesic's procedure. Take I,, = 50. e. An approximate ultimate point load on the basis of parts (a) and (b).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
How to build angle braces; Author: Country Living With The Harnish's;https://www.youtube.com/watch?v=3cKselS6rxY;License: Standard Youtube License