Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12, Problem 12.20P
A 600 mm diameter and 25 m long driven concrete pile carries a column load of 1200 kN. It is estimated that the shaft carries 900 kN and the point carries 300 kN. Determine the settlement of the pile head using the Poulos and Davis method with the following data:
Es = 25 MN/m2, Ep = 30,000 MN/m2, and μs = 0.2
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Example (3):
A site consist of two layers of clay. The upper layer is 8m- thick and has
an undrained shear strength of 80 kN/m². The lower layer is a thick layer
which has an undrained shear strength of 120 kN/m². Assume
• Top 1m of pile doesn't support load.
•
FS 1.5 and FS₁=3
=
(A) Estimate the working load of the pie with the following:
D=1.5m, Ds=4.5 m, L=27m Bell length is 3m.
(B)Determine the length of 600mm- diameter of driven pile to
support a working load of 1200 kN.
Q1/ For the footing shown in Figure (1),
estimate the pile group capacity.
0.6m dia
bored pile
Clay
c=80 kN/m²
y-17kN/m²
S=1.5 m
T
L=12 m
2.
Consider a group of 450 mm x 450 mm reinforced concrete piles were driven into
thick loose sand layer with the average unit weight and internal friction angle of 16 kN/m3
and 30°, respectively. Estimate the group pile capacity with the arrangement as shown in
Figure Q2 if the length of pile embedment is 30 m assuming ground water table is far
below the ground surface. Use 8 = 0.80 and K = 1.5Ko.
3B
3B
3B
1
3
3.5B
b
'P
9.
10
11
a
3.5B
2
4
1.5B
1.5B
1.5B
1.5B
1.5B
1.5B
Figure Q2
Chapter 12 Solutions
Principles of Foundation Engineering (MindTap Course List)
Ch. 12 - Prob. 12.1PCh. 12 - A 20 m long concrete pile is shown in Figure...Ch. 12 - A 500 mm diameter are 20 m long concrete pile is...Ch. 12 - Redo Problem 12.3 using Coyle and Castellos...Ch. 12 - A 400 mm 400 mm square precast concrete pile of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - A driven closed-ended pile, circular in cross...Ch. 12 - Consider a 500 mm diameter pile having a length of...Ch. 12 - Determine the maximum load that can be allowed on...Ch. 12 - Prob. 12.10P
Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12PCh. 12 - A concrete pile 16 in. 16 in. in cross section is...Ch. 12 - Prob. 12.14PCh. 12 - Solve Problem 12.13 using Eqs. (12.59) and...Ch. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - A steel pile (H-section; HP 310 125; see Table...Ch. 12 - Prob. 12.19PCh. 12 - A 600 mm diameter and 25 m long driven concrete...Ch. 12 - Redo Problem 12.20 using Vesics method, assuming...Ch. 12 - Prob. 12.22PCh. 12 - Prob. 12.23PCh. 12 - Solve Problem 12.23 using the method of Broms....Ch. 12 - Prob. 12.25PCh. 12 - Solve Problem 12.25 using the modified EN formula....Ch. 12 - Solve Problem 12.25 using the modified Danish...Ch. 12 - Prob. 12.28PCh. 12 - Prob. 12.29PCh. 12 - Figure 12.49a shows a pile. Let L = 15 m, D (pile...Ch. 12 - Redo Problem 12.30 assuming that the water table...Ch. 12 - Refer to Figure 12.49b. Let L = 18 m, fill = 17...Ch. 12 - Estimate the group efficiency of a 4 6 pile...Ch. 12 - The plan of a group pile is shown in Figure...Ch. 12 - Prob. 12.35PCh. 12 - Figure P12.36 shows a 3 5 pile group consisting...Ch. 12 - Prob. 12.37P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the maximum pile capacity for the pile group shown in figure below. If My = 500 kN.m and V = 7200 kN. 'My X=1.4 - x=1.4- y=1.2 y=1.2arrow_forward11.10 A concrete pile 0.406 m x 0.406 m in cross section is shown in Figure P11.10. Calculate the ultimate skin friction resistance by using the a. a method b. A method c. ẞ method Use =20° for all clays, which are normally consolidated. 6.1 m 12.2 m 0.406 m Figure P11.10 Groundwater table Ysat Silty clay 18.55 kN/m³ Cu = 35 kN/m² Silty clay Ysat = 19.24 kN/m³ Cu = 75 kN/m²arrow_forward5. A concrete pile is 20 m long has a cross section of 0.46 m × 0.46 m. The pile is embedded in a sand having y=17 kN/m³ and Ø= 38°. The allowable working load is 1200 kN. If 700 kN are contributed by frictional resistance and 500 kN are from the point load, determine the elastic settlement of the pile. Given: Ep = 21×106 kN/m², Es = 30×10³ kN/m², µs=0.38 and = 0.57.arrow_forward
- Determine the primary consolidation settlement for the 20 m long pile group shown below. Soil properties by layer are given in the figure, and the clay layers are normally consolidated. Assume a 2:1 load spread starting at a depth of 2/3 of the embedment depth, L. The pile group is square and has dimensions 2.6 m by 2.6 m in plan view. The groundwater table is 1 m below the ground surface. = 4000 kN 1 m Sandy soil Y =18.5 kN/m³ Q'=330 V W.T. 7 m -Group.. piles Clay 1 Y =17.2 kN/m3 e=0.83 C= 0.23 L= 20 m Ax B = 2.6 m x 14 m 2.6 m Clay 2 Y =17.5 kN/m3 e,=0.78 C=0.22. 8 m Clay 3 Y =18.0 kN/m? eo=0.76 C=0.20 12 m Rockarrow_forwardConsider a drilled, rough concrete pile with diameter B = 1m and length D = 10m embedded in a site underlain by a 5m thick layer of sand with fiction angle = 41 degrees and Ko = 0.5 that lies over an 8m thick layer of clay with fiction angle = 36 degrees, Ko = 0.38, and Su = 70 kPa. a. Determine the long term end bearing capacity of the pile. b. Determine the long term capacity of the pile.arrow_forwardFor the (4 x 4) pile group as shown in the figure, the settlement of pile group, in a normally consolidated clay stratum having properties as shown in the figure will be (Load dispersion = 2 H:1 V) mm. 900 kN G Normally consolidated clay Yat = 20 kN/m 6 m w̟ = 40% 8 m w, = 25% e, = 1.05 Hard stratum 250 mm Piles are spaced at 0.5 m c/c. Diameter of piles is 250 mm 0.5 m 0.5 m Top viewarrow_forward
- A group pile in clay is shown in the figure below. Determine the maximum vertical load Qg be applied if the allowable consolidation settlement of the pile group is set to be 0.17 m. Use the 2:1 stress distribution method to estimate the average effective stress in the clay layer. can Qg 3 m Sand Groundwater y = 15.72 kN/m3 table Sand 3 m Ysat = 18.55 kN/m3 2.75 m X 2.75 m Group plan Normally consolidated clay Ysat = 19.18 kN/m³ 15 m 18 m eo = 1 C. = 0,8 Normally consolidated clay Ysat = 19 kN/m3 eo = 0.25, C. =1 5 m Rockarrow_forwardA 30 cm diameter concrete pile is driven in a normally consolidated clay deposit 15 m thick. Estimate the safe load. Take cu = 70 kN/m^2 , α= 0.9 and FS= 2.5 . [Ans, 375 kN]arrow_forwardPlease help me solve3.8 The soil profi le at a site for an offshore structure is shown in Figure P13.8. The height of the pile above the sand surface is 15 m. Determine the allowable load for a driven closed-ended pipe pile with diameter 1.25 m and embedded 10 m into the stiff clay. A factor of safety of 2 is requiredarrow_forward
- Redo Problem 9.23 assuming that the water table coincides with the top of the fill and that γsat(fill) = 19.8 kN/m3. If the other quantities remain the same, what would be the downward drag force on the pile? Assume ẟ' = 0.5 Φ'fill.arrow_forwardDetermine the ultimate load capacity of a circular pile with diameter D = 20 cm installed in asaturated soft clay. The pile is embedded 10 m into the ground. According to measurements, thesoil exhibits an undrained shear strength according to the linear relationship: Su = 2+1.6z, wherez is the depth in meters and Su is the undrained shear strength in kPa. The soil's unit weight canbe assumed as 18 kN/m3arrow_forward9.27 The plan of a group pile is shown in Figure P9.27. Assume that the piles are embedded in a saturated homogeneous clay having a c = 90 kN/m². Given: diameter of piles (D) = 316 mm, center-to-center spacing of piles = 600 mm, and length of piles = 20 m. Find the allowable load-carrying capacity of the pile group. Use Table 9.10 and FS = 3. d Figure P9.27arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
How to build angle braces; Author: Country Living With The Harnish's;https://www.youtube.com/watch?v=3cKselS6rxY;License: Standard Youtube License