Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 12, Problem 12.111P

Solar flux of 900   W / m 2 is incident on the top side of a plate whose surface has a solar absorptivity of 0.9 and an emissivity of 0.1. The air and surroundings are at 17 C and the convection heat transfer coefficient between the plate and air is 20   W / m 2 K . Assuming that the bottom side of the plate is insulated, determine the steady-state temperature of the plate.

Blurred answer
Students have asked these similar questions
Consider a large plane wall of thickness L = 0.8 ft and thermal conductivity k = 1.2 Btu/h-ft-°F. The wall is covered with a material that has an emissivity of ε = 0.80 and a solar absorptivity of a = 0.60. The Inner surface of the wall is maintained at T₁ = 524 R at all times, while the outer surface is exposed to solar radiation that is incident at a rate of q solar = 300 Btu/h-ft2. The outer surface is also losing heat by radiation to deep space at O K. 0 Plate a solar o = 0.1714 x 10-8 Btu/h ft2 R4 Sun If the temperature of the outer surface of the wall is 556.39 R, determine the rate of heat transfer through the wall when steady operating conditions are reached. (Round your answer up to 2 decimal places.) 51 Btu/h-ft2 (per The rate of heat transfer through the wall when steady operating conditions are reached unit area)
7.Consider a person standing in a room maintained at 20°C at all times. The inner surfaces of the walls, floors, and ceiling of the house are observed to be at an average temperature of 12°C in winter and 23°C in summer. Determine the rates of radiation heat transfer between this person and the surrounding surfaces in both summer and winter if the exposed surface area, emissivity, and the average outer surface temperature of the person are 1.6 m2, 0.95, and 32°C, respectively.
A cylindrical tube has an inner diameter of 2 cm and a wall thickness of 1 cm. The tube is evacuated. In the center, there is a radiation source along its axis that sends 1e^5 W/m^2 to the inner surface of the tube. K for the tube wall is 2 W/m K. If the outer surface of the tube is cooled with water at 298 K with a convective heat transfer coefficient of 100 W/m^2 K, determine the minimum temperature rating for the tube material for safe operation.

Chapter 12 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 12 - Determine the fraction of the total, hemispherical...Ch. 12 - The spectral distribution of the radiation emitted...Ch. 12 - Consider a 5-mm-square, diffuse surface A0 having...Ch. 12 - Assuming blackbody behavior, determine the...Ch. 12 - The dark surface of a ceramic stove top may be...Ch. 12 - The energy flux associated with solar radiation...Ch. 12 - A small flat plate is positioned just beyond the...Ch. 12 - A spherical aluminum shell of inside diameter D=2m...Ch. 12 - The extremely high temperatures needed to trigger...Ch. 12 - An enclosure has an inside area of 100m2 , and its...Ch. 12 - Assuming the earth’s surface is black, estimate...Ch. 12 - A proposed method for generating electricity from...Ch. 12 - Approximations to Planck’s law for the spectral...Ch. 12 - Estimate the wavelength corresponding to maximum...Ch. 12 - A furnace with a long, isothermal, graphite tube...Ch. 12 - Isothermal furnaces with small apertures...Ch. 12 - For materials A and B, whose spectral...Ch. 12 - A small metal object, initially at Ti=1000K ,is...Ch. 12 - The directional total emissivity of nonmetallic...Ch. 12 - Consider the metallic surface of Example 12.7....Ch. 12 - The spectral, directional emissivity of a diffuse...Ch. 12 - Consider the directionally selective surface...Ch. 12 - A sphere is suspended in air in a dark room and...Ch. 12 - Estimate the total, hemispherical emissivity for...Ch. 12 - Sheet steel emerging from the hot roll section of...Ch. 12 - A large body of nonluminous gas at a temperature...Ch. 12 - An opaque surface with the prescribed spectral,...Ch. 12 - The spectral reflectivity distribution for white...Ch. 12 - A diffuse, opaque surface at 700 K has spectral...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - Consider an opaque, diffuse surface for which the...Ch. 12 - Radiation leaves a furnace of inside surface...Ch. 12 - The spectral transmissivity of a 1-mm-thick layer...Ch. 12 - The spectral transmissivity of plain and tinted...Ch. 12 - Referring to the distribution of the spectral...Ch. 12 - The spectral absorptivity and spectral...Ch. 12 - Consider a large furnace with opaque, diffuse,...Ch. 12 - Four diffuse surfaces having the spectral...Ch. 12 - The spectral transmissivity of a 50m -thick...Ch. 12 - An opaque, horizontal plate has a thickness of...Ch. 12 - Two small surfaces, A and B, are placed inside an...Ch. 12 - Consider an opaque, diffuse surface whose spectral...Ch. 12 - The 50-mm peephole of a large furnace operating at...Ch. 12 - The window of a large vacuum chamber is fabricated...Ch. 12 - A thermograph is a device responding to the...Ch. 12 - A radiation thermometer is a radiometer calibrated...Ch. 12 - A radiation detector has an aperture of area...Ch. 12 - A small anodized aluminum block at 35C is heated...Ch. 12 - Consider the diffuse, gray opaque disk A1 , which...Ch. 12 - A two-color pyrometer is a device that is used to...Ch. 12 - An apparatus commonly used for measuring the...Ch. 12 - A procedure for measuring the thermal conductivity...Ch. 12 - One scheme for extending the operation of gas...Ch. 12 - The equipment for heating a wafer during a...Ch. 12 - Neglecting the effects of radiation absorption,...Ch. 12 - Consider the evacuated tube solar collector...Ch. 12 - Solar flux of 900W/m2 is incident on the top side...Ch. 12 - Consider an opaque, gray surface whose directional...Ch. 12 - A contractor must select a roof covering material...Ch. 12 - It is not uncommon for the night sky temperature...Ch. 12 - Plant leaves possess small channels that connect...Ch. 12 - In the central receiver concept of solar energy...Ch. 12 - Radiation from the atmosphere or sky can be...Ch. 12 - A thin sheet of glass is used on the roof of a...Ch. 12 - Growers use giant fans to prevent grapes from...Ch. 12 - A circular metal disk having a diameter of 0.4 m...Ch. 12 - The neighborhood cat likes to sleep on the roof of...Ch. 12 - The exposed surface of a power amplifier for an...Ch. 12 - Consider a thin opaque, horizontal plate with an...Ch. 12 - The oxidized-aluminum wing of an aircraft has a...Ch. 12 - Two plates, one with a black painted surface and...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A spherical satellite in near-earth orbit is...Ch. 12 - An annular fin of thickness t is used as a...Ch. 12 - The directional absorptivity of a gray surface...Ch. 12 - Two special coatings are available for application...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A spherical capsule of 3-m radius is fired from a...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A solar panel mounted on a spacecraft has an area...Ch. 12 - It is known that on clear nights a thin layer of...Ch. 12 - A shallow layer of water is exposed to the natural...Ch. 12 - A roof-cooling system, which operates by...Ch. 12 - A wet towel hangs on a clothes line under...Ch. 12 - Our students perform a laboratory experiment to...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
How is a machining center different from a milling machine?

Degarmo's Materials And Processes In Manufacturing

What parts are included in the vehicle chassis?

Automotive Technology: Principles, Diagnosis, and Service (5th Edition)

What parts are included in the vehicle chassis?

Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Thermal Radiation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=FDmYCI_xYlA;License: Standard youtube license