Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 12, Problem 12.27P
Approximations to Planck’s law for the spectral emissive power are the Wien and Rayleigh-Jeans spectral distributions, which are useful for the extreme low and high limits of the product
- Show that the Planck distribution will have the form
- Show that the Planck distribution will have the form
when
when
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the following:
a. Average emissivity of both surfaces
b. Absorptivity of both surfaces
c. reflectivity of both surfaces
d. which surface is more suitable to serve as a solar absorber?
What is the total
hemispherical emissivity,,
for a real surface with a
temperature of T = 2900K,
with the spectral emissivity
shown in the graph below?
ελ
0.45
0.10
λ(μm)
0
2
4
The spectral emissivity function of an opaque surface at 800 K is approximated as:
Determine the average emissivity of the surface and its emissive power.
Chapter 12 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 12 - Consider an opaque horizontal plate that is well...Ch. 12 - A horizontal, opaque surface at a steady-state...Ch. 12 - The top surface of an L=5mmthick anodized aluminum...Ch. 12 - A horizontal semitransparent plate is uniformly...Ch. 12 - What is the irradiation at surfaces A2 , A3 , and...Ch. 12 - According to its directional distribution, solar...Ch. 12 - Solar radiation incident on the earth’s surface...Ch. 12 - On an overcast day the directional distribution of...Ch. 12 - During radiant heat treatment of a thin-film...Ch. 12 - A small radiant heat source of area A1=2x104m2...
Ch. 12 - Determine the fraction of the total, hemispherical...Ch. 12 - The spectral distribution of the radiation emitted...Ch. 12 - Consider a 5-mm-square, diffuse surface A0 having...Ch. 12 - Assuming blackbody behavior, determine the...Ch. 12 - The dark surface of a ceramic stove top may be...Ch. 12 - The energy flux associated with solar radiation...Ch. 12 - A small flat plate is positioned just beyond the...Ch. 12 - A spherical aluminum shell of inside diameter D=2m...Ch. 12 - The extremely high temperatures needed to trigger...Ch. 12 - An enclosure has an inside area of 100m2 , and its...Ch. 12 - Assuming the earth’s surface is black, estimate...Ch. 12 - A proposed method for generating electricity from...Ch. 12 - Approximations to Planck’s law for the spectral...Ch. 12 - Estimate the wavelength corresponding to maximum...Ch. 12 - A furnace with a long, isothermal, graphite tube...Ch. 12 - Isothermal furnaces with small apertures...Ch. 12 - For materials A and B, whose spectral...Ch. 12 - A small metal object, initially at Ti=1000K ,is...Ch. 12 - The directional total emissivity of nonmetallic...Ch. 12 - Consider the metallic surface of Example 12.7....Ch. 12 - The spectral, directional emissivity of a diffuse...Ch. 12 - Consider the directionally selective surface...Ch. 12 - A sphere is suspended in air in a dark room and...Ch. 12 - Estimate the total, hemispherical emissivity for...Ch. 12 - Sheet steel emerging from the hot roll section of...Ch. 12 - A large body of nonluminous gas at a temperature...Ch. 12 - An opaque surface with the prescribed spectral,...Ch. 12 - The spectral reflectivity distribution for white...Ch. 12 - A diffuse, opaque surface at 700 K has spectral...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - The spectral, hemispherical absorptivity of an...Ch. 12 - Consider an opaque, diffuse surface for which the...Ch. 12 - Radiation leaves a furnace of inside surface...Ch. 12 - The spectral transmissivity of a 1-mm-thick layer...Ch. 12 - The spectral transmissivity of plain and tinted...Ch. 12 - Referring to the distribution of the spectral...Ch. 12 - The spectral absorptivity and spectral...Ch. 12 - Consider a large furnace with opaque, diffuse,...Ch. 12 - Four diffuse surfaces having the spectral...Ch. 12 - The spectral transmissivity of a 50m -thick...Ch. 12 - An opaque, horizontal plate has a thickness of...Ch. 12 - Two small surfaces, A and B, are placed inside an...Ch. 12 - Consider an opaque, diffuse surface whose spectral...Ch. 12 - The 50-mm peephole of a large furnace operating at...Ch. 12 - The window of a large vacuum chamber is fabricated...Ch. 12 - A thermograph is a device responding to the...Ch. 12 - A radiation thermometer is a radiometer calibrated...Ch. 12 - A radiation detector has an aperture of area...Ch. 12 - A small anodized aluminum block at 35C is heated...Ch. 12 - Consider the diffuse, gray opaque disk A1 , which...Ch. 12 - A two-color pyrometer is a device that is used to...Ch. 12 - An apparatus commonly used for measuring the...Ch. 12 - A procedure for measuring the thermal conductivity...Ch. 12 - One scheme for extending the operation of gas...Ch. 12 - The equipment for heating a wafer during a...Ch. 12 - Neglecting the effects of radiation absorption,...Ch. 12 - Consider the evacuated tube solar collector...Ch. 12 - Solar flux of 900W/m2 is incident on the top side...Ch. 12 - Consider an opaque, gray surface whose directional...Ch. 12 - A contractor must select a roof covering material...Ch. 12 - It is not uncommon for the night sky temperature...Ch. 12 - Plant leaves possess small channels that connect...Ch. 12 - In the central receiver concept of solar energy...Ch. 12 - Radiation from the atmosphere or sky can be...Ch. 12 - A thin sheet of glass is used on the roof of a...Ch. 12 - Growers use giant fans to prevent grapes from...Ch. 12 - A circular metal disk having a diameter of 0.4 m...Ch. 12 - The neighborhood cat likes to sleep on the roof of...Ch. 12 - The exposed surface of a power amplifier for an...Ch. 12 - Consider a thin opaque, horizontal plate with an...Ch. 12 - The oxidized-aluminum wing of an aircraft has a...Ch. 12 - Two plates, one with a black painted surface and...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A radiator on a proposed satellite solar power...Ch. 12 - A spherical satellite in near-earth orbit is...Ch. 12 - An annular fin of thickness t is used as a...Ch. 12 - The directional absorptivity of a gray surface...Ch. 12 - Two special coatings are available for application...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A spherical capsule of 3-m radius is fired from a...Ch. 12 - Consider the spherical satellite of Problem...Ch. 12 - A solar panel mounted on a spacecraft has an area...Ch. 12 - It is known that on clear nights a thin layer of...Ch. 12 - A shallow layer of water is exposed to the natural...Ch. 12 - A roof-cooling system, which operates by...Ch. 12 - A wet towel hangs on a clothes line under...Ch. 12 - Our students perform a laboratory experiment to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 11.68 Two infinitely large, black, plane surfaces are 0.3 m apart, and the space between them is filled by an isothermal gas mixture at 811 K and atmospheric pressure. The gas mixture consists of by volume. If one of the surfaces is maintained at 278 K and the other at 1390 K, calculate (a) the effective emissivity of the gas at its temperature, (b) the effective absorptivity of the gas to radiation from the 1390 K surface, (c) the effective absorptivity of the gas to radiation from the 278 K surface, and (d) the net rate of heat transfer to the gas per square meter of surface area.arrow_forward1.26 Repeat Problem 1.25 but assume that the surface of the storage vessel has an absorbance (equal to the emittance) of 0.1. Then determine the rate of evaporation of the liquid oxygen in kilograms per second and pounds per hour, assuming that convection can be neglected. The heat of vaporization of oxygen at –183°C is .arrow_forwardDetermine the total average hemispherical emissivity and the emissive power of a surface that has a spectral hemispherical emissivity of 0.8 at wavelengths less than 1.5m, 0.6 at wavelengths from 1.5to2.5m, and 0.4 at wavelengths longer than 2.5m. The surface temperature is 1111 K.arrow_forward
- Consider an ideal gas enclosed in a spectral tube. When a high voltage is placed across the tube, many atoms are excited, and all excited atoms emit electromagnetic radiation at characteristic frequencies. According to the Doppler effect, the frequencies observed in the laboratory depend on the velocity of the emitting atom. The nonrelativistic Doppler shift of radiation emitted in the x direction is f = f0(1 + vx / c). The resulting wavelengths observed in the spectroscope are spread to higher and lower values because of the (respectively) lower and higher frequencies, corresponding to negative and positive values of vx. We say that the spectral line has been Doppler broadened. This is what allows us to see the lines easily in the spectroscope, because the Heisenberg uncertainty principle does not cause signifi cant line broadening in atomic transitions. (a) What is the mean frequency of the radiation observed in the spectroscope? (b) To get an idea of how much the spectral line is…arrow_forwardThe wavelength at which the Sun emits its most intense light is about 550nm. Assuming the Sun radiates as a perfect blackbody, estimate (σ = 5.6696 x 10-8 W/m2 K4). Find its total emitted power.arrow_forwardTaking the sun as a black body with a radius of 6.92 x 108 m having a maximum intensity of emission at a wavelength of 0.5 μm, estimate the sun's surface temperature and emissive power. If the distance between the earth and the sun is 1.5 x 10¹¹ m, estimate the solar energy radiation flux at the earth's surface. a. 1.36W/m2 O b. 1.36KW/m² O c. 63.99W/m² O d. 63.99 KW/m²arrow_forward
- The following figure was generated from experimental data relating to spectral black body emissive powen to the wavelength at three termperatures T1 T2 and T3 Ti > 12 > T3). E(W/m².um) 2(um The conclusion is that the measurements are: a Correct because the maxima in Ena show the correct trend Oa Correct because Planck's law is satisfied CC Wrong because the Stefan Boltzmann law is not satisfied O d. Wrong because Wien's displacement law is not satisfiedarrow_forwardA diffuse surface is characterized by the spectral hemispherical emissivity distribution shown in the figure below, where ε₁ = 0.75, ε2 = 0.10, and ε3 = 0.8. For a surface temperature of T, = 300 K, what is the emissive power for the surface? Чэ ε1 E3 ६ 0 02 4 68 10 λ (μm)arrow_forwardThe spectral hemispherical absorptivity and irradiation profiles for an opaque surface are shown in the figure. Find the total hemispherical absorptivity.arrow_forward
- 7. The emissive power of a blackbody, at 0.8 µm wavelength is measured as 1E5 W/m², µm. Find the blackbody temperature. [Ans. 1739 K]arrow_forwardWien's law is stated as follows: AmT = C, where C is 2898 μmK and Am is the wavelength at which the emissive power of a black body is maximum for a given temperature T. The spectral hemispherical emissivity (Ex) of a surface is shown in the figure below (1Å= 10-¹0m). The temperature at which the total hemispherical emissivity will be highest is K (round off to the nearest integer). Ext n 5000 6000 7000 (A)arrow_forwardA half cylindrical shell with a radius of 75 cm is held at 200°C and has an emissivity of 0.4. A long 200°C R= 75 cm cylinder has a diameter of 30 cm and is placed 20°C E= 0.4 D= 30 cm concentrically with the shell. The cylinder is radiatively black. At the instant the cylinder is 20°C, how much heat is exchanged from the shell to the cylinder, per meter length into the page, i.e., Qshell-eylinder/L.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license