An apparatus commonly used for measuring the reflectivity of materials is shown below. A water-cooled sample, of 30-mm diameter and temperature T s = 300 K , is mounted flush with the inner surface of a large enclosure. The walls of the enclosure are gray and diffuse with an emissivity of 0.8 and a uniform temperature T f = 1000 K . A small aperture is located at the bottom of the enclosure to permit sighting of the sample or the enclosure wall. The spectral reflectivity ρ λ of an opaque, diffuse sample material is as shown. The heat transfer coefficient for convection between the sample and the air within the cavity, which is also at 1000 K, is h = 10 W / m 2 ⋅ k (a) Calculate the absorptivity of the sample. (b) Calculate the emissivity of the sample. (c)Determine the heat removal rate (W) by the coolant. (d) The ratio of the radiation in the A direction to that in the B direction will give the reflectivity of the sample. Briefly explain why this is so.
An apparatus commonly used for measuring the reflectivity of materials is shown below. A water-cooled sample, of 30-mm diameter and temperature T s = 300 K , is mounted flush with the inner surface of a large enclosure. The walls of the enclosure are gray and diffuse with an emissivity of 0.8 and a uniform temperature T f = 1000 K . A small aperture is located at the bottom of the enclosure to permit sighting of the sample or the enclosure wall. The spectral reflectivity ρ λ of an opaque, diffuse sample material is as shown. The heat transfer coefficient for convection between the sample and the air within the cavity, which is also at 1000 K, is h = 10 W / m 2 ⋅ k (a) Calculate the absorptivity of the sample. (b) Calculate the emissivity of the sample. (c)Determine the heat removal rate (W) by the coolant. (d) The ratio of the radiation in the A direction to that in the B direction will give the reflectivity of the sample. Briefly explain why this is so.
Solution Summary: The author explains the absorptivity of the sample, which is 0.4878, the emissivity, and the coefficient of convection.
An apparatus commonly used for measuring the reflectivity of materials is shown below. A water-cooled sample, of 30-mm diameter and temperature
T
s
=
300
K
, is mounted flush with the inner surface of a large enclosure. The walls of the enclosure are gray and diffuse with an emissivity of 0.8 and a uniform temperature
T
f
=
1000
K
. A small aperture is located at the bottom of the enclosure to permit sighting of the sample or the enclosure wall. The spectral reflectivity
ρ
λ
of an opaque, diffuse sample material is as shown. The heat transfer coefficient for convection between the sample and the air within the cavity, which is also at 1000 K, is
h
=
10
W
/
m
2
⋅
k
(a) Calculate the absorptivity of the sample.
(b) Calculate the emissivity of the sample.
(c)Determine the heat removal rate (W) by the coolant.
(d) The ratio of the radiation in the A direction to that in the B direction will give the reflectivity of the sample. Briefly explain why this is so.
Q1/ A vertical, circular gate with water on one side as shown. Determine
the total resultant force acting on the gate and the location of the center of
pressure, use water specific weight 9.81 kN/m³
1 m
4 m
I need handwritten solution with sketches for each
Given answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.