Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 11.1, Problem 11.1PSP
For the reaction of crystal violet with NaOH(aq), the measured
- (a) Estimate how long it will take for the concentration of crystal violet to drop from 4.30 × 10−5 mol/L to 3.96 × 10−5 mol/L.
- (b) Could you use the same method to make an accurate estimate of how long it would take for the concentration of crystal violet to drop from 4.30 × 10−5 mol/L to 0.43 × 10−5 mol/L? Explain why or why not.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The decomposition of XY is second order in XY and has a rate constant of 7.41 × 10−3 L·mol−1·s−1 at a certain temperature, the half-life for this reaction at an initial concentration of 0.101 mol·L−1 1336. A) If the initial concentration of XY is 0.225 mol·L−1, how long will it take for the concentration to decrease to 6.95 × 10−2 mol·L−1 ?, B) If the initial concentration of XY is 0.080 mol·L−1, what is the concentration of XY after 75 s ?
6. The rate constant for the reaction, 2 N₂O5 (g) → 4 NO2 (g) + O2 (g), doubles when the
temperature is raised from 295.65 K to 300.62 K.
(a) Determine the activation energy (in kJ/mol) for the reaction, assuming that the pre-
exponential factor, A, in the Arrhenius equation is independent of temperature.
(b) At what temperature would you predict this rate constant to increase by another factor
of 10 relative to its value at 300.62 K?
The following kinetic data are collected for the initial rates
of a reaction 2 X + Z→ products:
Experiment
[X ]o(M)
[Z]o(M)
Rate (M/s)
0.25
0.25
4.0 x 10!
0.50
0.50
3.2 x 102
0.50
0.75
7.2 x 102
(a) What is the rate law for this reaction? (b) What is the
value of the rate constant with proper units? (c) What is
the reaction rate when the initial concentration of X is
0.75 M and that of Z is 1.25 M?
2.
3.
Chapter 11 Solutions
Chemistry: The Molecular Science
Ch. 11.1 - For the reaction of crystal violet with NaOH(aq),...Ch. 11.1 - (a) From data in Table 11.1, calculate the rate of...Ch. 11.1 - For the reaction 4NO2(g)+O2(g)2N2O5(g) (a) express...Ch. 11.1 - Instantaneous rates for the reaction of hydroxide...Ch. 11.1 - Prob. 11.3CECh. 11.2 - Prob. 11.4ECh. 11.2 - Prob. 11.3PSPCh. 11.2 - Prob. 11.5ECh. 11.3 - Prob. 11.4PSPCh. 11.3 - Prob. 11.5PSP
Ch. 11.3 - Prob. 11.6PSPCh. 11.3 - Prob. 11.7PSPCh. 11.4 - Prob. 11.6ECh. 11.4 - Prob. 11.7CECh. 11.4 - Prob. 11.8PSPCh. 11.4 - Prob. 11.8CECh. 11.5 - Prob. 11.9PSPCh. 11.5 - The frequency factor A is 6.31 108 L mol1 s1 and...Ch. 11.6 - Prob. 11.10CECh. 11.7 - Prob. 11.11ECh. 11.7 - The Raschig reaction produces the industrially...Ch. 11.7 - Prob. 11.12ECh. 11.8 - The oxidation of thallium(I) ion by cerium(IV) ion...Ch. 11.9 - Prob. 11.11PSPCh. 11.9 - Prob. 11.14CECh. 11 - An excellent way to make highly pure nickel metal...Ch. 11 - Prob. 1QRTCh. 11 - Prob. 2QRTCh. 11 - Prob. 3QRTCh. 11 - Prob. 4QRTCh. 11 - Prob. 5QRTCh. 11 - Prob. 6QRTCh. 11 - Prob. 7QRTCh. 11 - Prob. 8QRTCh. 11 - Prob. 9QRTCh. 11 - Prob. 10QRTCh. 11 - Prob. 11QRTCh. 11 - Cyclobutane can decompose to form ethylene:
The...Ch. 11 - Prob. 13QRTCh. 11 - Prob. 14QRTCh. 11 - For the reaction 2NO2(g)2NO(g)+O2(g) make...Ch. 11 - Prob. 16QRTCh. 11 - Prob. 17QRTCh. 11 - Ammonia is produced by the reaction between...Ch. 11 - Prob. 19QRTCh. 11 - Prob. 20QRTCh. 11 - The reaction of CO(g) + NO2(g) is second-order in...Ch. 11 - Nitrosyl bromide, NOBr, is formed from NO and Br2....Ch. 11 - Prob. 23QRTCh. 11 - Prob. 24QRTCh. 11 - Prob. 25QRTCh. 11 - For the reaction
these data were obtained at 1100...Ch. 11 - Prob. 27QRTCh. 11 - Prob. 28QRTCh. 11 - Prob. 29QRTCh. 11 - Prob. 30QRTCh. 11 - Prob. 31QRTCh. 11 - Prob. 32QRTCh. 11 - For the reaction of phenyl acetate with water the...Ch. 11 - When phenacyl bromide and pyridine are both...Ch. 11 - The compound p-methoxybenzonitrile N-oxide, which...Ch. 11 - Prob. 36QRTCh. 11 - Radioactive gold-198 is used in the diagnosis of...Ch. 11 - Prob. 38QRTCh. 11 - Prob. 39QRTCh. 11 - Prob. 40QRTCh. 11 - Prob. 41QRTCh. 11 - Prob. 42QRTCh. 11 - Prob. 43QRTCh. 11 - Prob. 44QRTCh. 11 - Prob. 45QRTCh. 11 - Prob. 46QRTCh. 11 - Prob. 47QRTCh. 11 - Prob. 48QRTCh. 11 - Prob. 49QRTCh. 11 - Prob. 50QRTCh. 11 - Prob. 51QRTCh. 11 - Prob. 52QRTCh. 11 - For the reaction of iodine atoms with hydrogen...Ch. 11 - Prob. 54QRTCh. 11 - The activation energy Ea is 139.7 kJ mol1 for the...Ch. 11 - Prob. 56QRTCh. 11 - Prob. 57QRTCh. 11 - Prob. 58QRTCh. 11 - Prob. 59QRTCh. 11 - Prob. 60QRTCh. 11 - Prob. 61QRTCh. 11 - Prob. 62QRTCh. 11 - Prob. 63QRTCh. 11 - Which of the reactions in Question 62 would (a)...Ch. 11 - Prob. 65QRTCh. 11 - Prob. 66QRTCh. 11 - Prob. 67QRTCh. 11 - Prob. 68QRTCh. 11 - Prob. 69QRTCh. 11 - Prob. 70QRTCh. 11 - Prob. 71QRTCh. 11 - For the reaction the rate law is Rate=k[(CH3)3CBr]...Ch. 11 - Prob. 73QRTCh. 11 - Prob. 74QRTCh. 11 - Prob. 75QRTCh. 11 - For this reaction mechanism,
write the chemical...Ch. 11 - Prob. 77QRTCh. 11 - Prob. 78QRTCh. 11 - Prob. 79QRTCh. 11 - When enzymes are present at very low...Ch. 11 - Prob. 81QRTCh. 11 - The reaction is catalyzed by the enzyme succinate...Ch. 11 - Prob. 83QRTCh. 11 - Many biochemical reactions are catalyzed by acids....Ch. 11 - Prob. 85QRTCh. 11 - Prob. 86QRTCh. 11 - Prob. 87QRTCh. 11 - Prob. 88QRTCh. 11 - Prob. 89QRTCh. 11 - Prob. 90QRTCh. 11 - Prob. 91QRTCh. 11 - Prob. 92QRTCh. 11 - Prob. 93QRTCh. 11 - Prob. 94QRTCh. 11 - Nitryl fluoride is an explosive compound that can...Ch. 11 - Prob. 96QRTCh. 11 - Prob. 97QRTCh. 11 - For a reaction involving the decomposition of a...Ch. 11 - Prob. 99QRTCh. 11 - Prob. 100QRTCh. 11 - Prob. 101QRTCh. 11 - This graph shows the change in concentration as a...Ch. 11 - Prob. 103QRTCh. 11 - Prob. 104QRTCh. 11 - Prob. 105QRTCh. 11 - Prob. 106QRTCh. 11 - Prob. 107QRTCh. 11 - Prob. 108QRTCh. 11 - Prob. 109QRTCh. 11 - Prob. 110QRTCh. 11 - Prob. 111QRTCh. 11 - Prob. 112QRTCh. 11 - Prob. 113QRTCh. 11 - Prob. 114QRTCh. 11 - Prob. 115QRTCh. 11 - Prob. 116QRTCh. 11 - Prob. 118QRTCh. 11 - Prob. 119QRTCh. 11 - In a time-resolved picosecond spectroscopy...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - (Section 11-5) A rule of thumb is that for a...Ch. 11 - Prob. 11.BCPCh. 11 - Prob. 11.CCPCh. 11 - Prob. 11.DCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Account for the relationship between the rate of a reaction and its activation energy.arrow_forwardGive at least two physical properties that might be used to determine the rate of a reaction.arrow_forwardThe label on a bottle of 3% (by volume) hydrogen peroxide, H2O2, purchased at a grocery store, states that the solution should be stored in a cool, dark place. H2O2decomposes slowly over time, and the rate of decomposition increases with an increase in temperature and in the presence of light. However, the rate of decomposition increases dramatically if a small amount of powdered MnO- is added to the solution. The decomposition products are H2O and O2. MnO2 is not consumed in the reaction. Write the equation for the decomposition of H2O2. What role does MnO2 play? In the chemistry lab, a student substituted a chunk of MnO2 for the powdered compound. The reaction rate was not appreciably increased. WTiat is one possible explanation for this observation? Is MnO2 part of the stoichiometry of the decomposition of H2O2?arrow_forward
- Which reaction mechanism assumptions are unimportant in describing simple ionic reactions between cations and anions? Why?arrow_forwardConsider the following statements: In general, the rate of a chemical reaction increases a bit at first because it takes a while for the reaction to get warmed up. After that, however, the rate of the reaction decreases because its rate is dependent on the concentrations of the reactants, and these are decreasing. Indicate everything that is correct in these statements, and indicate everything that is incorrect. Correct the incorrect statements and explain.arrow_forwardHydrogen gas and iodine vapor react as H2(g)+ I2(g) → 2HI(g). The activation energy of the formation of HI is 1.03x102 kJ whereas the activation energy of the dissociation of HI is 1.77x102 (a). Calculate the enthalpy of reaction for the reaction. (b). Sketch the energy profile for the reaction between hydrogen and iodine. Platinum acts as a catalyst for the reaction above. Sketch the energy profile for the catalyzed reaction in the energy profile. (c). Name the type of catalysis involved and explain qualitatively how the presence of platinum catalyzes the reaction above.arrow_forward
- The initial rate of the reaction is determined for different initial conditions, with the results listed in the table. (a) What is the overall reaction order? (b) What is the value of the rate constant, karrow_forwardThe reaction 2 NO(g) + Cl2(g) → 2 NOCl has the following rate law: Rate = k[NO]2 [Cl2]. The initial speed of the reaction was found to be 5.72×10‒6 M/s when the reaction was carried out at 25 °C with initial concentrations of 0.500 M NO and 0.250 M Cl2. What is the value of k?(a) 1.83×10‒4(b) 1.09×104(c) 9.15×10‒5(d) 5.72×10‒6arrow_forwardConsider this balanced chemical equation:H2O2(aq) + 3 I - (aq) + 2 H+ (aq)------> I3 - (aq) + 2 H2O(l )In the first 10.0 seconds of the reaction, the concentration of I - drops from 1.000 M to 0.868 M.(a) Calculate the average rate of this reaction in this time interval.(b) Determine the rate of change in the concentration of H+ (that is, Δ[H+]>Δt) during this time interval.arrow_forward
- Consider the following balanced chemical equation: H2O2 (aq) + 3 r (aq) + 2 H (aq) >l (aq) + 2 H,O (I) If the concentration of iodide (la) decreases from 0.718 M to 0.426 M in the first 15 seconds, what is the rate of reaction? (A) (B) (C) (D) (E) 0.0195 M/s 0.292 M/s -0.00195 M/s 0.00649 M/s 0.0973 M/sarrow_forwardThe decomposition reaction on N2O5 in carbon tetrachloride is 2 N2 O5-----> 4NO2 + O2. The rate law is first order in N2O5. At 64 °C the rate constant is 4.82 X 10-3s-1 (a) write the rate law for the reaction. (b) what is the rate when the concentration of N2O5 is doubled from 0.0240 M to 0.0480 M? Group of answer choices A) (a) rate= k[N2O5] (b) the rate doubles to 1.16 x 10E(-4) M/sec B.) (a) rate= k[N2O5] (b) the rate is halved to 5.8 x 10E(-5) M/sec C.) (a) rate= k[N2O5] (b) the rate doubles to 2.32 x 10E(-4) M/sec D.) (a) rate= k[N2O5]0 (b) the rate stays the samearrow_forwardWhich of the following is always true about a unimolecular reaction? (A) The activation energy is twice that of a unimolecular reaction. (B) The rate of the reaction doubles when the concentration of the reactants doubles. (C) If the temperature is doubled, the reaction rate doubles. (D) A larger molecule breaks down into two smaller molecules. (E) Two particles must collide together for the reaction to occur.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY