
(a)
Interpretation:
Average
Concept Introduction:
Consider the following reaction.
Where
Where,
Rate of the reaction can be expressed in terms of change in concentration of reactant and products by multiplying the reciprocal of the corresponding stoichiometric co-efficient to that.
When the rate is expressed in terms of change in reactant concentration, a minus sign has to be given. Since change in time will be a positive quantity and reactant concentration decreases with time change in concentration of reactant will be negative. So in order to make the rate a positive quantity negative sign is given.
But if the rate is expressed in terms of change in concentration of products, which is a positive quantity, no need of negative sign in the rate expression.
(a)

Answer to Problem 13QRT
Average rate is
Explanation of Solution
Given that the concentration of
So the average rate can be calculated as follows,
Average rate is
(b)
Interpretation:
Average rate of reaction in the interval
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 13QRT
Average rate is
Explanation of Solution
Given that the concentration of
So the average rate can be calculated as follows,
Average rate is
(c)
Interpretation:
Average rate of reaction in the interval
Concept Introduction:
Refer to part (a).
(c)

Answer to Problem 13QRT
Average rate is
Explanation of Solution
Given that the concentration of
So the average rate can be calculated as follows,
Average rate is
(d)
Interpretation:
Average rate of reaction in the interval
Concept Introduction:
Refer to part (a).
(d)

Answer to Problem 13QRT
Average rate is
Explanation of Solution
Given that the concentration of
So the average rate can be calculated as follows,
Average rate is
(e)
Interpretation:
Average rate of reaction in the interval
Concept Introduction:
Refer to part (a).
(e)

Answer to Problem 13QRT
Average rate is
Explanation of Solution
Given that the concentration of
So the average rate can be calculated as follows,
Average rate is
(f)
Interpretation:
Average rate of reaction in the interval
Concept Introduction:
Refer to part (a).
(f)

Answer to Problem 13QRT
Average rate is
Explanation of Solution
Given that the concentration of
So the average rate can be calculated as follows,
Average rate is
Want to see more full solutions like this?
Chapter 11 Solutions
Chemistry: The Molecular Science
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





