Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 73QRT
(a)
Interpretation Introduction
Interpretation:
The overall equation for the reaction of
Concept Introduction:
In a multistep reaction the overall reaction can be written as the sum of each elementary step by eliminating the common terms on either side of the reaction arrow.
(b)
Interpretation Introduction
Interpretation:
The reaction energy diagram for the reaction of
(c)
Interpretation Introduction
Interpretation:
It has to be shown that the rate law for the reaction of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Given a reaction between an organic molecule, denoted as A, and NaSH, we observe the following observations. Using the observations, write a rate law for the reaction.(a) The rate triples when the concentration of [A] is tripled and the concentration of [NaSH] is held constant.(b) The rate is decreased when the concentration of [A] is doubled and the concentration of [NaSH] is cut by a factor of 3.(c) The rate doubles when the concentration of [A] is cut in half and the concentration of [NaSH] is quadrupled.(d) The rate increases with an increase in temperature.
write the rate law
The rate law of a reaction is given below.From the given rate law, what will happen to the reaction time and reaction rate if the concentration of one of the reactants is doubled while keeping everything the same? why?Also, why the starch solution used as an indicator in an experiment turned blue at the end of the reaction?
rate law for hte reaction :
RX + H20→ R0H + HX , rate =K[RX]. the rate of reaction will be doubled when:
(a) concentration of H2O is doubled
(b)concentration of RX is reduced to half
(c) concentration of RX is doubled
(d) none of these
also give reason for your answer
Chapter 11 Solutions
Chemistry: The Molecular Science
Ch. 11.1 - For the reaction of crystal violet with NaOH(aq),...Ch. 11.1 - (a) From data in Table 11.1, calculate the rate of...Ch. 11.1 - For the reaction 4NO2(g)+O2(g)2N2O5(g) (a) express...Ch. 11.1 - Instantaneous rates for the reaction of hydroxide...Ch. 11.1 - Prob. 11.3CECh. 11.2 - Prob. 11.4ECh. 11.2 - Prob. 11.3PSPCh. 11.2 - Prob. 11.5ECh. 11.3 - Prob. 11.4PSPCh. 11.3 - Prob. 11.5PSP
Ch. 11.3 - Prob. 11.6PSPCh. 11.3 - Prob. 11.7PSPCh. 11.4 - Prob. 11.6ECh. 11.4 - Prob. 11.7CECh. 11.4 - Prob. 11.8PSPCh. 11.4 - Prob. 11.8CECh. 11.5 - Prob. 11.9PSPCh. 11.5 - The frequency factor A is 6.31 108 L mol1 s1 and...Ch. 11.6 - Prob. 11.10CECh. 11.7 - Prob. 11.11ECh. 11.7 - The Raschig reaction produces the industrially...Ch. 11.7 - Prob. 11.12ECh. 11.8 - The oxidation of thallium(I) ion by cerium(IV) ion...Ch. 11.9 - Prob. 11.11PSPCh. 11.9 - Prob. 11.14CECh. 11 - An excellent way to make highly pure nickel metal...Ch. 11 - Prob. 1QRTCh. 11 - Prob. 2QRTCh. 11 - Prob. 3QRTCh. 11 - Prob. 4QRTCh. 11 - Prob. 5QRTCh. 11 - Prob. 6QRTCh. 11 - Prob. 7QRTCh. 11 - Prob. 8QRTCh. 11 - Prob. 9QRTCh. 11 - Prob. 10QRTCh. 11 - Prob. 11QRTCh. 11 - Cyclobutane can decompose to form ethylene:
The...Ch. 11 - Prob. 13QRTCh. 11 - Prob. 14QRTCh. 11 - For the reaction 2NO2(g)2NO(g)+O2(g) make...Ch. 11 - Prob. 16QRTCh. 11 - Prob. 17QRTCh. 11 - Ammonia is produced by the reaction between...Ch. 11 - Prob. 19QRTCh. 11 - Prob. 20QRTCh. 11 - The reaction of CO(g) + NO2(g) is second-order in...Ch. 11 - Nitrosyl bromide, NOBr, is formed from NO and Br2....Ch. 11 - Prob. 23QRTCh. 11 - Prob. 24QRTCh. 11 - Prob. 25QRTCh. 11 - For the reaction
these data were obtained at 1100...Ch. 11 - Prob. 27QRTCh. 11 - Prob. 28QRTCh. 11 - Prob. 29QRTCh. 11 - Prob. 30QRTCh. 11 - Prob. 31QRTCh. 11 - Prob. 32QRTCh. 11 - For the reaction of phenyl acetate with water the...Ch. 11 - When phenacyl bromide and pyridine are both...Ch. 11 - The compound p-methoxybenzonitrile N-oxide, which...Ch. 11 - Prob. 36QRTCh. 11 - Radioactive gold-198 is used in the diagnosis of...Ch. 11 - Prob. 38QRTCh. 11 - Prob. 39QRTCh. 11 - Prob. 40QRTCh. 11 - Prob. 41QRTCh. 11 - Prob. 42QRTCh. 11 - Prob. 43QRTCh. 11 - Prob. 44QRTCh. 11 - Prob. 45QRTCh. 11 - Prob. 46QRTCh. 11 - Prob. 47QRTCh. 11 - Prob. 48QRTCh. 11 - Prob. 49QRTCh. 11 - Prob. 50QRTCh. 11 - Prob. 51QRTCh. 11 - Prob. 52QRTCh. 11 - For the reaction of iodine atoms with hydrogen...Ch. 11 - Prob. 54QRTCh. 11 - The activation energy Ea is 139.7 kJ mol1 for the...Ch. 11 - Prob. 56QRTCh. 11 - Prob. 57QRTCh. 11 - Prob. 58QRTCh. 11 - Prob. 59QRTCh. 11 - Prob. 60QRTCh. 11 - Prob. 61QRTCh. 11 - Prob. 62QRTCh. 11 - Prob. 63QRTCh. 11 - Which of the reactions in Question 62 would (a)...Ch. 11 - Prob. 65QRTCh. 11 - Prob. 66QRTCh. 11 - Prob. 67QRTCh. 11 - Prob. 68QRTCh. 11 - Prob. 69QRTCh. 11 - Prob. 70QRTCh. 11 - Prob. 71QRTCh. 11 - For the reaction the rate law is Rate=k[(CH3)3CBr]...Ch. 11 - Prob. 73QRTCh. 11 - Prob. 74QRTCh. 11 - Prob. 75QRTCh. 11 - For this reaction mechanism,
write the chemical...Ch. 11 - Prob. 77QRTCh. 11 - Prob. 78QRTCh. 11 - Prob. 79QRTCh. 11 - When enzymes are present at very low...Ch. 11 - Prob. 81QRTCh. 11 - The reaction is catalyzed by the enzyme succinate...Ch. 11 - Prob. 83QRTCh. 11 - Many biochemical reactions are catalyzed by acids....Ch. 11 - Prob. 85QRTCh. 11 - Prob. 86QRTCh. 11 - Prob. 87QRTCh. 11 - Prob. 88QRTCh. 11 - Prob. 89QRTCh. 11 - Prob. 90QRTCh. 11 - Prob. 91QRTCh. 11 - Prob. 92QRTCh. 11 - Prob. 93QRTCh. 11 - Prob. 94QRTCh. 11 - Nitryl fluoride is an explosive compound that can...Ch. 11 - Prob. 96QRTCh. 11 - Prob. 97QRTCh. 11 - For a reaction involving the decomposition of a...Ch. 11 - Prob. 99QRTCh. 11 - Prob. 100QRTCh. 11 - Prob. 101QRTCh. 11 - This graph shows the change in concentration as a...Ch. 11 - Prob. 103QRTCh. 11 - Prob. 104QRTCh. 11 - Prob. 105QRTCh. 11 - Prob. 106QRTCh. 11 - Prob. 107QRTCh. 11 - Prob. 108QRTCh. 11 - Prob. 109QRTCh. 11 - Prob. 110QRTCh. 11 - Prob. 111QRTCh. 11 - Prob. 112QRTCh. 11 - Prob. 113QRTCh. 11 - Prob. 114QRTCh. 11 - Prob. 115QRTCh. 11 - Prob. 116QRTCh. 11 - Prob. 118QRTCh. 11 - Prob. 119QRTCh. 11 - In a time-resolved picosecond spectroscopy...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - If you know some calculus, derive the integrated...Ch. 11 - (Section 11-5) A rule of thumb is that for a...Ch. 11 - Prob. 11.BCPCh. 11 - Prob. 11.CCPCh. 11 - Prob. 11.DCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 7-46 (Chemical Connections 7D) What reaction takes place when sunlight hits the compound silver chloride?arrow_forward7-43 (Chemical Connections 7A and 7B) Why is a high fever dangerous? Why is a low body temperature dangerous?arrow_forwardGiven the following exothermic combustion reaction, calculate An and list two or more stresses that would improve product yield. CH12O6(5) + 602) 6 CO) + 6 H,Oarrow_forward
- For the reaction A2 + B2 → 2AB, Ea(fwd) = 125 kJ/mol and Ea(rev) = 85 kJ/mol. Assuming the reaction occurs in one step, (a) draw a reaction energy diagram; (b) calculate ΔH°rxn; and (c) sketch a possible transition state.arrow_forwardSome reactions proceed through a chain mechanism involving radicals, which are highly reactive species with one or more unpaired electrons. The radicals are produced in initiation steps, through either thermal or photodissociation. Reactions in which the radical centre is transferred are called propagation steps. The radicals are lost in termination steps. Consider the following chain mechanism:(1) AH → A + H·(2) A → B· + C(3) AH + B· → A + D(4) A + B· → P(a) Identify the initiation, propagation, and termination steps.(b) Use the steady-state approximation to deduce that the decompositionof AH is f irst-order in AH.arrow_forwardConsider the following reaction: (a) The rate law for this reaction is first order in HBr(g) and first order in O₂(g). What is the rate law for this reaction? Rate = k [HBr(g)] [O₂(g)] O Rate = k [HBr(g)]² [O₂(g)] O Rate = k [HBr(g)] [O₂(g)]² O Rate = k [HBr(g)]² [0₂(g)]² O Rate = k [HBr(g)] [O₂(g)]³ O Rate = k [HBr(g)]4 [0₂(g)] (b) If the rate constant for this reaction at a certain temperature is 11500, what is the reaction rate when [HBr(g)] = 0.00379 M and [O₂(g)] = 0.00876 M? Rate = 4 HBr(g) + O₂(g) → 2 H₂O(g) + 2 Br₂(g) M/s. Rate = (c) What is the reaction rate when the concentration of HBr(g) is doubled, to 0.00758 M while the concentration of O₂(g) is 0.00876 M? M/Sarrow_forward
- In relation to the attached image, select the correct alternatives: (I) It is an exothermic reaction. (II) Compare the original reaction, black curve, with the presence of a catalyst, red curve. (III) It is an endothermic reaction. (IV) The original reaction, black curve, is compared with the presence of an inhibitor, red curve. (V) The reaction progresses as the temperature varies.arrow_forwardDraw the appropriate fishhook arrows for the following reaction, and label each step with one of the following (homolytic bond cleavage, addition to a pi bond, hydrogen abstraction, halogen abstraction, elimination, coupling): ·Br: Н— Вг -Br Br -Br ·Br:arrow_forwardFor the reaction ABC + D⇌ AB +CD, ΔHrxn°=-55 kJ/mol and Ea(fwd)=215 kJ/mol. Assuming a one-stepreaction, (a) draw a reaction energy diagram; (b) calculate Ea(rev);and (c) sketch a possible transition state if ABC is V-shaped.step, (a) draw a reaction energy diagram; (b) calculate ΔHrxn°;and (c) sketch a possible transition statearrow_forward
- Alcohol is removed from the bloodstream by a series of metabolic reactions. The first reaction produces acetaldehyde; then other products are formed. The following data have been determined for the rate at which alcohol is removed from the blood of an average male, although individual rates can vary by 25-30%. Women metabolize alcohol a little more slowly than men: [CH,OH] (M) 4.4 x 10-2 3.3 x 10-2 2.2 x 10-2 Rate (mol/L/h) 2.0 x 10-2 2.0 × 10-2 2.0 x 10-2 Determine the rate equation, the rate constant, and the overall order for this reaction.arrow_forwardAssume that the formation of nitrogen dioxide: 2NO(g) + O2(g) 2NO2(g) is an elementary reaction. (a) Write the rate law for this reaction. (b) A sample of air at a certain temperature is contaminated with 2.0 ppm of NO by volume. Under these conditions, can the rate law be simplified? If so, write the simplified rate law. (c) Under the conditions described in part (b), the half-life of the reaction has been estimated to be 6.4 × 103 min. What would the half-life be if the initial concentration of NO were 10 ppm?arrow_forwardThere are two steps in the usual industrial preparation of acrylic acid, the immediate precursor of several useful plastics. In the first step, calcium carbide and water react to form acetylene and calcium hydroxide: CaC(s) + 2 H₂O(9)-C₂H₂(g) + Ca(OH)₂(s) In the second step, acetylene, carbon dioxide and water react to form acrylic acid: 6C₂H₂(g) + 3 CO₂(9)+ 4H₂O(g)-5CH₂CHCO,H(9) Write the net chemical equation for the production of acrylic acid from calcium carbide, water and carbon dioxide. Be sure your equation is balanced. 4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Kinetics: Chemistry's Demolition Derby - Crash Course Chemistry #32; Author: Crash Course;https://www.youtube.com/watch?v=7qOFtL3VEBc;License: Standard YouTube License, CC-BY