
Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 8RQ
What is the function of chills? What are they made of?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(read image, answer given)
6/86 The connecting rod AB of a certain internal-combustion engine weighs 1.2 lb with mass center at G
and has a radius of gyration about G of 1.12 in. The piston and piston pin A together weigh 1.80 lb. The
engine is running at a constant speed of 3000 rev/min, so that the angular velocity of the crank is
3000(2)/60 = 100л rad/sec. Neglect the weights of the components and the force exerted by the gas in
the cylinder compared with the dynamic forces generated and calculate the magnitude of the force on the
piston pin A for the crank angle 0 = 90°. (Suggestion: Use the alternative moment relation, Eq. 6/3, with B
as the moment center.)
Answer
A = 347 lb
3"
1.3"
B
1.7"
PROBLEM 6/86
6/85 In a study of head injury against the instrument panel of a car during sudden or crash stops where
lap belts without shoulder straps or airbags are used, the segmented human model shown in the figure is
analyzed. The hip joint O is assumed to remain fixed relative to the car, and the torso above the hip is
treated as a rigid body of mass m freely pivoted at O. The center of mass of the torso is at G with the initial
position of OG taken as vertical. The radius of gyration of the torso about O is ko. If the car is brought to a
sudden stop with a constant deceleration a, determine the speed v relative to the car with which the
model's head strikes the instrument panel. Substitute the values m = 50 kg, 7 = 450 mm, r = 800 mm, ko
= 550 mm, 0 = 45°, and a = 10g and compute v.
Answer
v = 11.73 m/s
PROBLEM 6/85
Chapter 10 Solutions
Manufacturing Engineering & Technology
Ch. 10 - Explain why casting is an important manufacturing...Ch. 10 - Why do most metals shrink when they are cast?Ch. 10 - What are the differences between the...Ch. 10 - What are dendrites? Why are they called so?Ch. 10 - Describe the difference between short and long...Ch. 10 - What is superheat? Is it important? What are the...Ch. 10 - Define shrinkage and porosity. How can you tell...Ch. 10 - What is the function of chills? What are they made...Ch. 10 - Why is the Reynolds number important in casting?Ch. 10 - What is a sprue? What shape should a sprue have if...
Ch. 10 - How is fluidity defined? Why is it important?Ch. 10 - Explain the reasons for hot tearing in castings.Ch. 10 - Why is it important to remove dross or slag during...Ch. 10 - Why is Bernoullis equation important in casting?Ch. 10 - Describe thixocasting and rheocasting.Ch. 10 - What is Chvorinovs Rule?Ch. 10 - How is a blister related to a scab?Ch. 10 - Is there porosity in a chocolate bar? In an ice...Ch. 10 - Describe the stages involved in the contraction of...Ch. 10 - Explain the effects of mold materials on fluid...Ch. 10 - It is known that pouring metal at a high rate into...Ch. 10 - Describe the events depicted in Fig. 10.5.Ch. 10 - Would you be concerned about the fact that...Ch. 10 - Review Fig. 10.8 and make a summary, explaining...Ch. 10 - Make a sketch of volume vs. temperature for a...Ch. 10 - What practical demonstrations can you suggest to...Ch. 10 - Explain why a casting may have to be subjected to...Ch. 10 - List and explain the reasons why porosity can...Ch. 10 - Why does porosity have detrimental effects on the...Ch. 10 - A spoked handwheel is to be cast in gray iron. In...Ch. 10 - Which of the following considerations are...Ch. 10 - Explain why the constant C in Eq. (10.7) depends...Ch. 10 - Are external chills as effective as internal...Ch. 10 - Explain why, as shown in Table 10.1, gray cast...Ch. 10 - Referring to Fig. 10.11, explain why internal...Ch. 10 - Note the shape of the two risers shown in Fig....Ch. 10 - Is there any difference in the tendency for...Ch. 10 - What is the influence of the cross-sectional area...Ch. 10 - It has long been observed that (a) low pouring...Ch. 10 - In casting metal alloys, what would you expect to...Ch. 10 - If you inspect a typical cube of ice, you are...Ch. 10 - How can you tell whether cavities in a casting are...Ch. 10 - Describe the drawbacks to having a riser that is...Ch. 10 - Reproduce Fig. 10.2 for a casting that is...Ch. 10 - List the process variables that affect the...Ch. 10 - Assume that you have a method of measuring...Ch. 10 - A round casting is 0.2 m (7.9 in.) in diameter and...Ch. 10 - A cylinder with a diameter of 2.0 in. and a height...Ch. 10 - The constant C in Chvorinovs rule is given as 2.5...Ch. 10 - Pure copper is poured into a sand mold. The metal...Ch. 10 - For the sprue described in Problem 10.58, what...Ch. 10 - When designing patterns for casting, pattern...Ch. 10 - Can you devise fluidity tests other than that...Ch. 10 - Figure P10.55 indicates various defects and...Ch. 10 - The fluidity test shown in Fig. 10.9 illustrates...Ch. 10 - Utilizing the equipment and materials available in...Ch. 10 - One method of relieving stress concentrations in a...Ch. 10 - Describe the effects on mold design, including the...Ch. 10 - Small amounts of slag often persist after skimming...Ch. 10 - Design an experiment to measure the constants C...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Using AutoCADarrow_forward340 lb 340 lb Δarrow_forward4. In a table of vector differential operators, look up the expressions for V x V in a cylindrical coordinate system. (a) Compute the vorticity for the flow in a round tube where the velocity profile is = vo [1-(³] V₂ = Vo (b) Compute the vorticity for an ideal vortex where the velocity is Ve= r where constant. 2πг (c) Compute the vorticity in the vortex flow given by Ve= r 2лг 1- exp ( r² 4vt (d) Sketch all the velocity and vorticity profiles.arrow_forward
- In the figure, Neglects the heat loss and kinetic and potential energy changes, calculate the work produced by the turbine in kJ T = ??? Steam at P=3 MPa, T = 280°C Turbine Rigid tank V = 1000 m³ Turbine Rigid tank V = 100 m³ V = 1000 m³ V = 100 m³ The valve is opened. Initially: evacuated (empty) tank O a. 802.8 Initially: Closed valve O b. 572 O c. 159.93 Od. 415 e. 627.76 equilibriumarrow_forwardPlease find the torsional yield strength, the yield strength, the spring index, and the mean diameter. Use: E = 28.6 Mpsi, G = 11.5 Mpsi, A = 140 kpsi·in, m = 0.190, and relative cost= 1.arrow_forwardA viscoelastic column is made of a material with a creep compliance of D(t)= 0.75+0.5log10t+0.18(log10t)^2 GPA^-1 for t in s. If a constant compressive stress of σ0 = –100 MPa is applied at t = 0, how long will it take (= t1/2) for the height of the column to decrease to ½ its original value? Note: You will obtain multiple answers for this problem! One makes sense physically and one does not.arrow_forward
- A group of 23 power transistors, dissipating 2 W each, are to be cooled by attaching them to a black-anodized square aluminum plate and mounting the plate on the wall of a room at 30°C. The emissivity of the transistor and the plate surfaces is 0.9. Assuming the heat transfer from the back side of the plate to be negligible and the temperature of the surrounding surfaces to be the same as the air temperature of the room, determine the length of the square plate if the average surface temperature of the plate is not to exceed 50°C. Start the iteration process with an initial guess of the size of the plate as 43 cm. The properties of air at 1 atm and the film temperature of (Ts + T)/2 = (50 + 30)/2 = 40°C are k = 0.02662 W/m·°C, ν = 1.702 × 10–5 m2 /s, Pr = 0.7255, and β = 0.003195 K–1. Multiple Choice 0.473 m 0.284 m 0.513 m 0.671 marrow_forwardA 40-cm-diameter, 127-cm-high cylindrical hot water tank is located in the bathroom of a house maintained at 20°C. The surface temperature of the tank is measured to be 44°C and its emissivity is 0.4. Taking the surrounding surface temperature to be also 20°C, determine the rate of heat loss from all surfaces of the tank by natural convection and radiation. The properties of air at 32°C are k=0.02603 W/m-K, v=1.627 x 10-5 m²/s, Pr = 0.7276, and ẞ = 0.003279 K-1 The rate of heat loss from all surfaces of the tank by natural convection is The rate of heat loss from all surfaces of the tank by radiation is W. W.arrow_forwardA 2.5-m-long thin vertical plate is subjected to uniform heat flux on one side, while the other side is exposed to cool air at 5°C. The plate surface has an emissivity of 0.73, and its midpoint temperature is 55°C. Determine the heat flux subjected on the plate surface. Uniform heat flux -Plate, € = 0.73 Cool air 5°C 7 TSUIT Given: The properties of water at Tf,c= 30°C. k=0.02588 W/m.K, v=1.608 x 10-5 m²/s Pr = 0.7282 The heat flux subjected on the plate surface is W/m²arrow_forward
- Hot water is flowing at an average velocity of 5.82 ft/s through a cast iron pipe (k=30 Btu/h-ft-°F) whose inner and outer diameters are 1.0 in and 1.2 in, respectively. The pipe passes through a 50-ft-long section of a basement whose temperature is 60°F. The emissivity of the outer surface of the pipe is 0.5, and the walls of the basement are also at about 60°F. If the inlet temperature of the water is 150°F and the heat transfer coefficient on the inner surface of the pipe is 30 Btu/h-ft².°F, determine the temperature drop of water as it passes through the basement. Evaluate air properties at a film temperature of 105°C and 1 atm pressure. The properties of air at 1 atm and the film temperature of (Ts+ T∞)/2 = (150+60)/2 = 105°F are k=0.01541 Btu/h-ft-°F. v=0.1838 × 10-3 ft2/s, Pr = 0.7253, and ẞ = 0.00177R-1arrow_forwardhand-written solutions only, please. correct answers upvoted!arrow_forwardhand-written solutions only, please. correct answers upvoted!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license