Concept explainers
Part of the water supply for the South Rim of Grand Canyon National Park is taken from the Colorado River [54]. A flow rate of 600 gpm taken from the river at elevation 3734 ft is pumped to a storage tank atop the South Rim at 7022 ft elevation. Part of the pipeline is above ground and part is in a hole directionally drilled at angles up to 70° from the vertical; the total pipe length is approximately 13,200 ft. Under steady-flow operating conditions, the frictional head loss is 290 ft of water in addition to the static lift. Estimate the diameter of the commercial steel pipe in the system. Compute the pumping power requirement if the pump efficiency is 61 percent.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Additional Engineering Textbook Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Fundamentals Of Thermodynamics
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Engineering Mechanics: Statics
Introduction To Finite Element Analysis And Design
Heating Ventilating and Air Conditioning: Analysis and Design
- Write legibly Complex Pipeline System_Series Pipes 3. Calculate the flow through a three-new steel pipes connected in series having diameters of 6 in., 8 in., and 10 in, and lengths of 900 ft, 1200 ft, and 2000 ft, respectively, when the total lost head is 15.5 ft. Use C = 100 for all pipes. Answer: _______________________________ mgdarrow_forwardSketch the energy grade line (EGL) and hydraulic grade line (HGL) for the pipeline below.arrow_forwardProblem 2 A pump is needed in a water supply system. The water is being pumped out of a ground-level storage reservoir with water surface elevation of 149.27 ft and needs to pass over a hill 2 miles away, where the pipe centerline is at elevation 200.00 ft. The flowrate is 22 mgd, pipe diameter is 24 inches, Hazen-Williams friction factor is 110, and pressure at the crest of the hill must be at least 20 psi. (a) What head must the pump provide? (b) How much power will be added to the water? (c) What size motor should be purchased if the pump/motor combination has an efficiency of 80 percent?arrow_forward
- (b) Figure 3 shows a pump with 80% efficiency (no) delivers 50 Liter/s of water at 20°C from tank 1 to tank 2. The pipeline has 150 mm diameter with a length of 200 m made of galvanised steel. Evaluate the input power to an electric motor of 90% (nm) efficiency that connected to the pump. The globe valve used is % wide open. 2 100 m GLOBE VALVE PRESSURE GAUGE МОTOR PUMParrow_forwardWater is to be pumped to an atmospheric rooftop storage tank atop a 5-story building, 75 feet above ground-level. A pump station is located at the ground-level. The suction line is a 2-inch ID commercial steel pipe tapped into a municipal supply line maintained at 50 PSIG 5 feet below ground-level. The discharge line is 1.5-inch ID commercial steel, and the total length of pipe is approximately 100 ft. There are two ball valves, a water meter, and gate valve on the discharge line. Determine the pump head required to deliver 40 GPM and the pump power that must be supplied to the water. If a pump is required, what is the motor power required if the pump operates at 55% efficiency?arrow_forward8.59 Two tanks A and B, of constant cross-sectional area of 10 m² and 2.5 m², respectively, are connected by a 5 cm pipe, 100 m long, with f = 0.03. If the initial difference of water levels is 3 m, how long will it take for 2.5 m³ of water to flow from A to B? Considering entry and exit losses, it can be grossly assumed that the flow velocity, in m/s, through the pipe is 1.75√h, where his in m, taking g = 10 m/sec², also, may take area of pipe as 2 x 10-3 m².arrow_forward
- Please answer in clear handwriting.arrow_forwardC2. A conical tube is fixed vertically with its smaller end upwards and it forms a part of the pipeline. The diameter at the smaller end is 245 mm and at the larger end is 467 mm. The length of the conical tube is 1.8 m and the flow rate of the oil is 128 liters/s. The pressure at the smaller end is equivalent to a head of 9.7 m of oil. Considering the following two cases: (1) Neglecting friction, (without head loss) determine (i) the velocity at the smaller end in m/s, (ii) the velocity at the larger end in m/s, and (iii) the pressure at the larger end of the tube. (2) If a head loss (with head loss) in the tube is hL= 0.0153(V1-V2)2, where V1 is the velocity at the smaller end and V2 is the velocity at the larger end, determine (iv) the head loss in m of oil and (v) the pressure at the larger end of the tube.arrow_forwardC2. A conical tube is fixed vertically with its smaller end upwards and it forms a part of the pipeline. The diameter at the smaller end is 245 mm and at the larger end is 467 mm. The length of the conical tube is 1.8 m and the flow rate of the oil is 128 liters/s. The pressure at the smaller end is equivalent to a head of 9.7 m of oil. Considering the following two cases: (1) Neglecting friction, (without head loss) determine (i) the velocity at the smaller end in m/s, (ii) the velocity at the larger end in m/s, and (iii) the pressure at the larger end of the tube. (2) If a head loss (with head loss) in the tube is hL= 0.0153(V1-V2)2, where V1 is the velocity at the smaller end and V2 is the velocity at the larger end, determine (iv) the head loss in m of oil and (v) the pressure at the larger end of the tube.arrow_forward
- 3. A pump steadily circulates oil used for lubricating heavy machine tools. The volume flow rate and temperature of the oil are 300 gal/min and 104°F, respectively. At 104°F, the kinematic viscosity and the specific gravity of the oil are 2.15 x 10-3 ft² /s and 0.89, respectively. The pipe lengths are 25 ft for the 4-in diameter pipe and 75 ft for the 3-in diameter one. The Schedule-40 steel pipe has an average roughness element size of 0.0018 in. If all minor losses can be ignored, evaluate how much power (in a unit of horsepower) the pump delivers to the oil. 6 ft 22 ft Flow 15 ft Discharge line 3-in Schedule 40 Suction line 4-in Schedule 40 steel pipe steel pipe Pumparrow_forwardA designer needs a quarter-turn shut-off valve to flow approximately 10 GPM, with an inlet pressure of 3000 psig and an outlet pressure of 2900 psig. The flow media is clean water at room temperature. She selects a plug valve with a flow coefficient of 1.20. Is her valve choice appropriate for the required application?arrow_forward4. The main feedwater pump of a PWR delivers water to the steam generator at a rate of 15,000 GPM (946.3 lit/s). The steam generator pressure is 900 psia (6.2 MPa). The difference between the discharge and the pump centerline eleva- tion is 100 ft (30.48 m). Find the pump static discharge head. Water temperature is 450 F (232.2 C). [Ans.: 2600 ft (792.5 m)].arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY