Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 18P
Data from tests of a water suction pump operated at 2000 rpm with a 12-in.-diameter impeller are
Plot the performance curves for this pump; include a curve of efficiency versus volume flow rate. Locate the best efficiency point and specify the pump rating at this point.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Refer to the “composite performance chart” for a Goulds 3x4-10centrifugal pump operating at 1750 rpm. It shows the pump performance curve for 5 differentimpeller sizes, but also shows the HP required, efficiency, and NPSH required at differentoperating points.Describe the performance of this pump, using an 8 inch impeller and a required flow rate of175 gpm. Give head available, power required (BHP), efficiency, and NPSH req’d.
What is the water horsepower (WHP)?
A single stage centrifugal pump has an impeller of 250 mm diameter
which rotates at 1,800 rpm and lifts 60 lit/sec to 25 m with an efficiency
of 70%. Obtain the number of stages and diameter of each impeller of a
similar multi-stage pump to lift 75 lit/sec to 175 m at 1,500 rpm.
(8 stages ; 280 mm dia)
A test on centrifugal pump operating at 3463 rpm showed a total head of 48 ft at a capacity of 900 gpm. Estimate the total head and capacity of the pump if it were operated at 1750 rpm. Assume normal operation at point of maximum efficiency in each case.
Chapter 10 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 10 - The geometry of a centrifugal water pump is r1 =...Ch. 10 - Find the resulting -groups when (a) D, , and Q or...Ch. 10 - Consider the centrifugal pump impeller dimensions...Ch. 10 - Dimensions of a centrifugal pump impeller areCh. 10 - Dimensions of a centrifugal pump impeller areCh. 10 - The blade is one of a series. Calculate the force...Ch. 10 - This blade is one of a series. What force is...Ch. 10 - A centrifugal water pump, with 15-cm-diameter...Ch. 10 - A centrifugal water pump designed to operate at...Ch. 10 - A series of blades, such as in Example 10.13,...
Ch. 10 - In passing through this blade system, the absolute...Ch. 10 - A centrifugal pump runs at 1750 rpm while pumping...Ch. 10 - A centrifugal water pump designed to operate at...Ch. 10 - Kerosene is pumped by a centrifugal pump. When the...Ch. 10 - In the water pump of Problem 10.8, the pump casing...Ch. 10 - Use data from Appendix C to choose points from the...Ch. 10 - Data from tests of a water suction pump operated...Ch. 10 - A centrifugal pump impeller having r1 = 50 mm, r2...Ch. 10 - A centrifugal pump impeller having dimensions and...Ch. 10 - An axial-flow fan operates in sea-level air at...Ch. 10 - Data measured during tests of a centrifugal pump...Ch. 10 - A small centrifugal pump, when tested at N = 2875...Ch. 10 - If the impeller of Problem 10.20 rotates between...Ch. 10 - At the outlet of a pump impeller of diameter 0.6 m...Ch. 10 - Typical performance curves for a centrifugal pump,...Ch. 10 - A pump with D = 500 mm delivers Q = 0.725 m3/s of...Ch. 10 - At its best efficiency point ( = 0.87), a...Ch. 10 - Using the performance curves in Appendix C, select...Ch. 10 - A pumping system must be specified for a lift...Ch. 10 - A centrifugal water pump operates at 1750 rpm; the...Ch. 10 - A set of eight 30-kW motor-pump units is used to...Ch. 10 - A blower has a rotor with 12-in. outside diameter...Ch. 10 - A centrifugal water pump has an impeller with an...Ch. 10 - Appendix C contains area bound curves for pump...Ch. 10 - Use data from Appendix C to verify the similarity...Ch. 10 - A centrifugal water pump has an impeller with...Ch. 10 - Catalog data for a centrifugal water pump at...Ch. 10 - A 1/3 scale model of a centrifugal water pump...Ch. 10 - Sometimes the variation of water viscosity with...Ch. 10 - A large deep fryer at a snack-food plant contains...Ch. 10 - Data from tests of a pump, with a...Ch. 10 - A four-stage boiler feed pump has suction and...Ch. 10 - A centrifugal pump operating at N = 2265 rpm lifts...Ch. 10 - A centrifugal pump is installed in a piping system...Ch. 10 - Part of the water supply for the South Rim of...Ch. 10 - Consider the flow system shown in Problem 8.94....Ch. 10 - Afire nozzle is supplied through 300 ft of...Ch. 10 - Performance data for a centrifugal fan of 3-ft...Ch. 10 - The performance data of Problem 10.57 are for a...Ch. 10 - Experimental test data for an aircraft engine fuel...Ch. 10 - Preliminary calculations for a hydroelectric power...Ch. 10 - Conditions at the inlet to the nozzle of a Pelton...Ch. 10 - A Francis turbine is to operate under a head of 46...Ch. 10 - A Kaplan (propeller with variable-pitch blades)...Ch. 10 - Francis turbine Units 19, 20, and 21, installed at...Ch. 10 - Measured data for performance of the reaction...Ch. 10 - For a flow rate of 12 L/s and turbine speed of 65...Ch. 10 - The velocity of the water jet driving this impulse...Ch. 10 - An impulse turbine is to develop 15 MW from a...Ch. 10 - An impulse turbine under a net head of 33 ft was...Ch. 10 - The absolute velocities and directions of the jets...Ch. 10 - A fanboat in the Florida Everglades is powered by...Ch. 10 - A jet-propelled aircraft traveling at 225 m/s...Ch. 10 - When an air jet of 1-in.-diameter strikes a series...Ch. 10 - The volume flow rate through the propeller of an...Ch. 10 - A typical American multi blade farm windmill has D...Ch. 10 - An airplane flies at 200 km/h through still air of...Ch. 10 - This ducted propeller unit drives a ship through...Ch. 10 - A model of an American multi blade farm windmill...Ch. 10 - A large Darrieus vertical axis wind turbine was...Ch. 10 - Show that this ducted propeller system when moving...Ch. 10 - This ducted propeller unit (now operating as a...Ch. 10 - What is the maximum power that can be expected...Ch. 10 - If an ideal windmill is operating at best...Ch. 10 - A prototype air compressor with a compression...Ch. 10 - Prob. 89PCh. 10 - We have seen many examples in Chapter 7 of...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
The mechanism of Prob. 2/15 is repeated here. Develop a general expression for the moment MO of the force actin...
Engineering Mechanics: Statics
What are the two reasons for not having drill bushings actually touching the workpiece? How many of the designs...
Degarmo's Materials And Processes In Manufacturing
Determine the angle for equilibrium and the force in cord AB.
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
If x = 8 m, vx = 8 m/s, and ax = 4 m/s2 when t = 2 s, determine the magnitude of the particles velocity and acc...
Engineering Mechanics: Dynamics (14th Edition)
Represent each of the following with SI units having an appropriate prefix: (a) 8653 ms, (b) 8368 N, (c) 0.893 ...
Statics and Mechanics of Materials (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Specify the pump type that would be used for the following conditions: N = 675 rpm; Q = 20 000 gpm; H = 50 ft; and n; = 1 stage.arrow_forwardAnalyze to select the type of the turbine when its diameter is 600 mm, rotational speed is 600 rpm and working under a water head of 120 meters. The buckets deflect the 100 mm diameter jet through an angle of 165°. Take the coefficient of velocity for the nozzle as 0.97. Use Table given below for selection of turbine. Sr. # Specific speed (rpm) Type of turbine 1 8-30 Pelton wheel with one nozzle 30 - 50 Pelton wheel with 2 or more nozzles 50-250 Francis turbine 4 250-1000 Kaplan turbine 2. 3.arrow_forwardFind the offset angle for an axial pump that delivers 50 gpm at 1750 rpm. The volumetric efficiency is 95%. The pump has a nine 0.75 inch diameter pistons arranged on a 6-in piston circle diameter.arrow_forward
- A centrifugal pump equipped with a variable frequency (speed) drive running at 3500 rpm is discharging 240GPM corresponding to a head of 287ft. The horsepower is 35.5. if the pump's speed is reduced to 2900 rpm, what will be the revised flow rate? Select the correct response: 176.21 gpm 76.21 gpm 89.66 gpm 98.85 gpm 289.66 gpm 198.86 gpmarrow_forwardFigure below shows the performance curve family of Model 5009 Centrifugal pumps of Taco Pump Inc., running at a fixed speed of N = 1160 rpm. For the pump with the impeller diameter D = 8.625 in., calculate the power coefficient (Cp*) of the given pump at BEP if water is the fluid. HEAD IN FEET 0000 50 40 20 10 8.625" 30 (219mm). 0 O 0.821 O 0.731 O 0.467 aco 10 O 0.235 L/SEC 5 9.25" (235mm) 8.00" (203mm) 7.375" (187mm) 6.75" (171mm) 125 Model 5009 FI & CI Series 25 15 20 -do CURVES BASED ON CLEAR WATER WITH SPECIFIC GRAVITY OF 1.0 72% 75% 30 79% 1160 RPM FEBRUARY 19. 2002 40 3,5 45 REQUIRED NPSH 1.5HP (1.1KW) 79% 1⁰⁰ of 15² Curve no. 2140 Min. Imp. Dia. 6.75" Size 6 x 5 x 9.0 50 55 60 250 375 500 625 FLOW IN GALLONS PER MINUTE 72% 2HP(1.5KW) colo & 2⁰. It & SC- 09. 55% 5% 3HP (2.2KW) 7.5HP(5.6KW) 45% de 750 875 NGFEET 15 12 -9 -6 3 0 10 8 50 SHP(3.7KW) NPSH HEAD IN METERS 1000 r45 36 F27 18 -9 0 -100 --80 4 -40 -60 2 -20 -O HEAD IN KILOPASCALSarrow_forwardA radial flow pump operating at maximum efficiency at a specific speed of 2300 is to deliver 260gpm against a head of 129ft at a rotative speed of 2100 rpm. Find the required number of stages. ANSWER: 3arrow_forward
- B/A pump operates at 17237.5 kPa, discharges 11.4 liter/min and requires a power 3.75 kW to drive the pump. Compute the overall efficiency of the pump. If the pump is driven at 1725 rpm. What is the input torque to the pump.arrow_forwardCalculate the disposition, pipe diameter and specific speed of a centrifugal pump, the impeller rotation speed of 1750 rpm, used in a sprinkler system with a pressure of 280 kPa, a friction loss of 3.5 m, a compressor velocity of 0.5 m, a static drawdown of 3 m at the bottom of the pump, and a static expulsion of 2 m at the top of the pump. The pump has a capacity of 6.35 kilowatts and an efficiency of 80%.arrow_forwardIt is proposed to design a homologous model for a centrifugal pump.the prototype pump is to run at 600rpm and develop 30m head the flow rate being 1 m^3/s. The model of 1/4 scale is to run at 1450 rpm. Determine the head developed discharge and power required for the model. Overall efficiency is 80%.arrow_forward
- A Centrifugal pump operates at a speed of 1450 rpm and discharge of 250 m³/hr against a head of 40m and efficiency=55%. 1- Calculate the pump power 2- Compute the discharge, head, and pump power if the pump speed were changed to 2900 r/min?arrow_forwardA radial bladed centrifugal pump running at 1440 rpm is to deliver 30 l/min of water against a head of 20 m. Assuming flow velocity as 3 m/s. Determine the diameter and width of the impeller at the outlet.arrow_forwardDisplacement (c): 0.2 in3/revShank diameter (d) = 0.625 in.Piston diameter (D) = 1.5 in.Rotation speed (n): 1725 RPMPressure (P): 600 PSIStroke (L) = 18in. a) Calculate the theoretical flow rate of the pump in in3/min and US GPM.Theoretical flow (Q) = Theoretical displacement (C) x Speed of revolution (n)Theoretical flow (Q) = 0.2 in3/rev x 1725 rpmTheoretical flow (Q) = 345 in3/min = 1.49 US GPM b) Calculate the cylinder output speed in in/s.Cylinder output speed (VS) = Piston side flow (Q) / Piston area (Ap)Cylinder output speed (VS) = (Displacement x Speed of revolution) / Piston area (Ap)Cylinder output speed (VS) = (0.2 in3/rev x 1725 RPM) / 1.77 in2Cylinder output speed (VS) = (0.2 in3/rev x 1725 RPM) / 1.77 in2Cylinder output speed (VS) = 196.02in/s = 196.02 / 60s = 3.20 in/s Questions: c) Knowing the output velocity (ram speed), calculate the rod side flow in GPM when the ram is extending. d) Calculate the piston exit time in seconds. e) Calculate the piston entry time in…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license