Fox and McDonald's Introduction to Fluid Mechanics
9th Edition
ISBN: 9781118912652
Author: Philip J. Pritchard, John W. Mitchell
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 63P
A Francis turbine is to operate under a head of 46 m and deliver 18.6 MW while running at 150 rpm. The runner diameter is 4 m. A 1-m-diameter model is operated in a laboratory under the same head. Find the model speed, power, and flow rate.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve in 5 min
Solve by hand please
3. A 90% efficient Francis turbine running at 100 rpm discharges 6m * 3/s of water. The inner runner radius is 1.8 m and the outer periphery of the wheel has a radius of 2.5 m. The blade height is 50 cm. The blade angle beta_{1} is 80 degrees and beta_{2} is 160 degrees Find the vane angle, torque, and the power from the turbine
Chapter 10 Solutions
Fox and McDonald's Introduction to Fluid Mechanics
Ch. 10 - The geometry of a centrifugal water pump is r1 =...Ch. 10 - Find the resulting -groups when (a) D, , and Q or...Ch. 10 - Consider the centrifugal pump impeller dimensions...Ch. 10 - Dimensions of a centrifugal pump impeller areCh. 10 - Dimensions of a centrifugal pump impeller areCh. 10 - The blade is one of a series. Calculate the force...Ch. 10 - This blade is one of a series. What force is...Ch. 10 - A centrifugal water pump, with 15-cm-diameter...Ch. 10 - A centrifugal water pump designed to operate at...Ch. 10 - A series of blades, such as in Example 10.13,...
Ch. 10 - In passing through this blade system, the absolute...Ch. 10 - A centrifugal pump runs at 1750 rpm while pumping...Ch. 10 - A centrifugal water pump designed to operate at...Ch. 10 - Kerosene is pumped by a centrifugal pump. When the...Ch. 10 - In the water pump of Problem 10.8, the pump casing...Ch. 10 - Use data from Appendix C to choose points from the...Ch. 10 - Data from tests of a water suction pump operated...Ch. 10 - A centrifugal pump impeller having r1 = 50 mm, r2...Ch. 10 - A centrifugal pump impeller having dimensions and...Ch. 10 - An axial-flow fan operates in sea-level air at...Ch. 10 - Data measured during tests of a centrifugal pump...Ch. 10 - A small centrifugal pump, when tested at N = 2875...Ch. 10 - If the impeller of Problem 10.20 rotates between...Ch. 10 - At the outlet of a pump impeller of diameter 0.6 m...Ch. 10 - Typical performance curves for a centrifugal pump,...Ch. 10 - A pump with D = 500 mm delivers Q = 0.725 m3/s of...Ch. 10 - At its best efficiency point ( = 0.87), a...Ch. 10 - Using the performance curves in Appendix C, select...Ch. 10 - A pumping system must be specified for a lift...Ch. 10 - A centrifugal water pump operates at 1750 rpm; the...Ch. 10 - A set of eight 30-kW motor-pump units is used to...Ch. 10 - A blower has a rotor with 12-in. outside diameter...Ch. 10 - A centrifugal water pump has an impeller with an...Ch. 10 - Appendix C contains area bound curves for pump...Ch. 10 - Use data from Appendix C to verify the similarity...Ch. 10 - A centrifugal water pump has an impeller with...Ch. 10 - Catalog data for a centrifugal water pump at...Ch. 10 - A 1/3 scale model of a centrifugal water pump...Ch. 10 - Sometimes the variation of water viscosity with...Ch. 10 - A large deep fryer at a snack-food plant contains...Ch. 10 - Data from tests of a pump, with a...Ch. 10 - A four-stage boiler feed pump has suction and...Ch. 10 - A centrifugal pump operating at N = 2265 rpm lifts...Ch. 10 - A centrifugal pump is installed in a piping system...Ch. 10 - Part of the water supply for the South Rim of...Ch. 10 - Consider the flow system shown in Problem 8.94....Ch. 10 - Afire nozzle is supplied through 300 ft of...Ch. 10 - Performance data for a centrifugal fan of 3-ft...Ch. 10 - The performance data of Problem 10.57 are for a...Ch. 10 - Experimental test data for an aircraft engine fuel...Ch. 10 - Preliminary calculations for a hydroelectric power...Ch. 10 - Conditions at the inlet to the nozzle of a Pelton...Ch. 10 - A Francis turbine is to operate under a head of 46...Ch. 10 - A Kaplan (propeller with variable-pitch blades)...Ch. 10 - Francis turbine Units 19, 20, and 21, installed at...Ch. 10 - Measured data for performance of the reaction...Ch. 10 - For a flow rate of 12 L/s and turbine speed of 65...Ch. 10 - The velocity of the water jet driving this impulse...Ch. 10 - An impulse turbine is to develop 15 MW from a...Ch. 10 - An impulse turbine under a net head of 33 ft was...Ch. 10 - The absolute velocities and directions of the jets...Ch. 10 - A fanboat in the Florida Everglades is powered by...Ch. 10 - A jet-propelled aircraft traveling at 225 m/s...Ch. 10 - When an air jet of 1-in.-diameter strikes a series...Ch. 10 - The volume flow rate through the propeller of an...Ch. 10 - A typical American multi blade farm windmill has D...Ch. 10 - An airplane flies at 200 km/h through still air of...Ch. 10 - This ducted propeller unit drives a ship through...Ch. 10 - A model of an American multi blade farm windmill...Ch. 10 - A large Darrieus vertical axis wind turbine was...Ch. 10 - Show that this ducted propeller system when moving...Ch. 10 - This ducted propeller unit (now operating as a...Ch. 10 - What is the maximum power that can be expected...Ch. 10 - If an ideal windmill is operating at best...Ch. 10 - A prototype air compressor with a compression...Ch. 10 - Prob. 89PCh. 10 - We have seen many examples in Chapter 7 of...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
the internal loading at point B.
Engineering Mechanics: Statics & Dynamics (14th Edition)
The W10 15 cantilevered beam is made of A-36 steel and is subjected to the loading shown. Determine the displa...
Mechanics of Materials (10th Edition)
That can you say about the beginning state of the R410A in Fig.P3.6c versus that in Fig. P3.9c for the same pis...
Fundamentals Of Thermodynamics
Convert a volume of 6.35 liters to cubic nneters.
Applied Fluid Mechanics (7th Edition)
ICA 7-22
A manufacturing process uses 10 pound-mass of plastic resin per hour [lbm/h]. Rather than using a trad...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
1.1 What is the difference between an atom and a molecule? A molecule and a crystal?
Manufacturing Engineering & Technology
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. A Pelton wheel of 4 m diameter operates with a head of 1000 m. Estimate the flow rate and power output of the machine, assuming that it operates at peak efficiency and there are no losses in the flow upstream of the turbine. 2. A Pelton wheel operates with a head of 400 m at 350 rpm, and it is powered by a jet 12 cm in diameter. Find the specific speed (U.S. customary units), and the wheel diameter, if there are no losses in the flow upstream of the turbine and it operates at peak efficiency.arrow_forwardA single jet Pelton turbine operates a 10,000 KW generator. The generator efficiency is 93%, turbine efficiency is 86%, turbine head is 350 m, coefficient of nozzle velocity is 0.98, speed ratio is 0.46 and the jet ratio is approximately 12. Find the size of the jet, mear diameter of runner, synchronous speed, specific speed of turbine and bucket dimensions.arrow_forwardA single stage centrifugal pump has an impeller of 250 mm diameter which rotates at 1,800 rpm and lifts 60 lit/sec to 25 m with an efficiency of 70%. Obtain the number of stages and diameter of each impeller of a similar multi-stage pump to lift 75 lit/sec to 175 m at 1,500 rpm. (8 stages ; 280 mm dia)arrow_forward
- Pumps: A centrifugal pump having 4 stages in parallel, delivers 18 kiloliters/min of liquid against a head of 25 m. The diameter of the impellers being 24 cm and the speed of 1800 rpm. A pump is to be made up with a number of stages in series of similar construction to that of the first pump to run at 1250 rpm and to deliver 15 kiloliters/min against a totalhead of 250 m. Find the diameter of the impellers and the number of stages required in this case. Answer: D = 46.63 cm, n = 6 stagesarrow_forwardA Pelton wheel develops 70 kW under a head of 60 m of water. It rotates 400 rpm. Overall efficiency is 80%. Find the discharge rate in m³/s. Use the equation below, where P is power of the turbine shaft and no is the overall efficiency, where specific weight of water is is 9.80 kN/m³ no P YQH A generator is driven by a small, single-jet Pelton turbine designed to have a power specific speed sp 0.20. The effective head at nozzle inlet is 200 m and the nozzle velocity coefficient is 0.985. The runner rotates at 880 rev/min, The turbine overall efficiency is 80%. Find (a) the power delivered by the shaft of the turbine and (b) find the power delivered by the water to the turbine. where density of water is 1000 kg/m³ and g is 9.80 m/s². Use Stup Ω P/p (gHE)* Overall efficiency ne and Power developed at turbine shaft hydraulic power P YQHarrow_forward2. The specific speed of a turbine is 85 rpm and running at 500 rpm. What is the maximum power, in HP, delivered by the generator if the head is 25 m and generator efficiency is 90 %. Copy the problem, then show Complete Solution/s (i.e. transformations, equivalent formula, etc).arrow_forward
- An inflow to a turbine with a discharge of 20 m³/s leads to a ration speed of 150 rpm. The blades inlet edges have an angle of 120° to the direction of whirl. The outer diameter of the runner is 1.5 m and the runner inlet width is 1.0 m. 5. (a) To plot the velocity triangle at the blade outlet edge. (b) Assume design operating conditions and no velocity of whirl at outlet, calculate the power delivered by the runner. (c) The elevation difference between the head race and the tail race is 23 m and the head available to the turbine is 20 m, what is the hydraulic efficiency of the turbine and overall efficiency? (d) If a model of 1/10 full scale is constructed to operate under a head of 10 m, what must be its speed, power, water consumption and overall efficiency to run under the similar conditions to the prototype?arrow_forwardCan you draw a diagram of what’s happening please thanksarrow_forwardAn impeller of a centrifugal pump runs at 90 rpm under a net head of 10 m and has vanes inclined at 120° to the direction of motion at outlet. The diameter of impeller at exit is double than that at inlet and velocity of flow is constant at 2.5 m/s. The manometric efficiency is 75 %. Find: (a) diameter of impeller at exit and (b) Vane angle at inlet.arrow_forward
- A 30 MW power plant uses a double overhung Pelton Turbine under the net head of 400 m at its inlet. Find the jet diameter, mean runner diameter and runner speed of the turbine. Assume generator efficiency 95%, mechanical efficiency 95%, hydraulic efficiency 90%, coefficient of velocity 0.95, speed ratio 0.46 and jet ratio 10.arrow_forward2. A wind turbine has the maximum power output at the rated speed of 12 m/s and a rotor diameter of 82 meters. The cut-in and cut-out speeds for this type of wind turbine are 4 m/s and 23 m/s, respectively. The table below shows the annual wind data near a potential site for setting up a wind farm using this type of wind turbine and the power coefficient of the wind turbine at the specific wind speed. The air density is 1.22 kg/m³. Wind speed (m/s) Power coefficient 7 Hours 1190 5 0.25 3000 10 0.5 2400 15 0.25 1700 20 0.1 400 25 50 30 20 (a). What is the maximum power output of this wind turbine, assuming Betz limit? (b). What is the average power output if the wind turbine is installed at this site?. (c). What is the capacity factor of the wind turbine at this site? (d). If a wind farm consisting of 100 such wind turbines is built at the site, how much energy does this wind farm generate in a year (in the unit of kWh)? (e). Is this a good site for using this particular type of wind…arrow_forwardA single jet Pelton wheel is required to drive a generator to develop 10Mw. The available head at the nozzle is 762m. Assuming electric generator efficiency is 95%, Pelton wheel efficiency 87%, coefficient of velocity 0.97, mean bucket velocity 0.46 of the jet velocity, outlet bucket angle 15° and the friction of bucket reduces the relative velocity by 15%, find (a) the flow rate of water through turbine (b) the diameter of the jet (c) the force exerted by the jet to the nozzle.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license