(a)
To prove :f and g are inverse functions.
(a)

Explanation of Solution
Given data:
Calculation:
Algebraically,
Let f(x) be y
So,
G(x) is inverse function of f(x)
(b)
To prove :f and g are inverse function.
(b)

Explanation of Solution
Given data:
Calculation:
Graphically:
As the g(x) is the reflection of the f(x).
So g(x) is inverse function of f(x)
(c)
To prove: f and g are inverse function.
(c)

Explanation of Solution
Given data:
Calculation:
Numerically:
Domain of f(x): R Domain of g(x):R
Range of f(x):R Range of g(x):R
So g(x) is a inverse of f(x) as domain of f(x) is equal to range of g(x).
Conclusion:
G(x) is a inverse function of f(x)
Chapter 1 Solutions
EP PRECALC.GRAPHING APPR.-WEBASSIGN-1YR
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





