To calculate: The real solutions of the equation
Answer to Problem 79RE
The solutions of the equation are and
Explanation of Solution
Given information:
The equation is given as
Formula used:
In order to find all the solutions to higher-degree equation, use synthetic division, factoring, and the Quadratic Formula.
In order to Factorise the high degreepolynomial, determine all the terms that were multiplied together to get the given polynomial. Then try to factor each of the terms found in the first step. This continues until it can’t be factored anymore. When it can’t be factored further ,then polynomial is completely factored.
For an equation of the form
Calculation:
Consider the equation
This equation can be written as
On solving
Thus, the real solutions of
Chapter 1 Solutions
EBK PRECALCULUS: MATHEMATICS FOR CALCUL
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning